Advertisement

Using Constraint Logic Programming for the Verification of Customized Decision Models for Clinical Guidelines

  • Szymon Wilk
  • Adi Fux
  • Martin Michalowski
  • Mor Peleg
  • Pnina Soffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)

Abstract

Computer-interpretable implementations of clinical guidelines (CIGs) add knowledge that is outside the scope of the original guideline. This knowledge can customize CIGs to patients’ psycho-social context or address comorbidities that are common in the local population, potentially increasing standardization of care and patient compliance. We developed a two-layered contextual decision-model based on the PROforma CIG formalism that separates the primary knowledge of the original guideline from secondary arguments for or against specific recommendations. In this paper we show how constraint logic programming can be used to verify the layered model for two essential properties: (1) secondary arguments do not rule in recommendations that are ruled out in the original guideline, and (2) the CIG is complete in providing recommendation(s) for any combination of patient data items considered. We demonstrate our approach when applied to the asthma domain.

References

  1. 1.
    Institute of Medicine: Clinical Practice Guidelines We Can Trust (2013)Google Scholar
  2. 2.
    Fux, A., Peleg, M., Soffer, P.: How does personal information affect clinical decision making? Eliciting categories of personal context and effects. In: AMIA Annual Symposium, p. 1741 (2012)Google Scholar
  3. 3.
    Quinn, C.C., Gruber-Baldini, A.L., Shardell, M., Weed, K., Clough, S.S., Peeples, M., Terrin, M., Bronich-Hall, L., Barr, E., Lender, D.: Mobile diabetes intervention study: testing a personalized treatment/behavioral communication intervention for blood glucose control. Contemp. Clin. Trials 30(4), 334–346 (2009)CrossRefGoogle Scholar
  4. 4.
    Sutton, D.R., Fox, J.: The syntax and semantics of the PROforma guideline modeling language. J. Am. Med. Inform. Assoc. 10(5), 433–443 (2003)CrossRefGoogle Scholar
  5. 5.
    Riano, D., Real, F., Lopez-Vallverdu, J.A., Campana, F., Ercolani, S., Mecocci, P., Annicchiarico, R., Caltagirone, C.: An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. J. Biomed. Inform. 45(3), 429–446 (2012)CrossRefGoogle Scholar
  6. 6.
    Grandi, F.: Dynamic class hierarchy management for multi-version ontology-based personalization. J. Comput. Syst. Sci. 82(1 Part A), 69–90 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Grandi, F., Mandreoli, F., Martoglia, R.: Efficient management of multi-version clinical guidelines. J. Biomed. Inform. 45(6), 1120–1136 (2012)CrossRefGoogle Scholar
  8. 8.
    Michalowski, M., Wilk, S., Rosu, D., Kezadri, M., Michalowski, W., Carrier, M.: Expanding a first-order logic mitigation framework to handle multimorbid patient preferences. In: AMIA Annual Symposium Proceedings 2015, pp. 895–904 (2015)Google Scholar
  9. 9.
    Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inform. 46(4), 744–763 (2013)CrossRefGoogle Scholar
  10. 10.
    Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M.M., Mohapatra, S.: Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint logic programming. J. Biomed. Inform. 46(2), 341–353 (2013)CrossRefGoogle Scholar
  11. 11.
    Perez, B., Porres, I.: Authoring and verification of clinical guidelines: a model driven approach. J. Biomed. Inform. 43(4), 520–536 (2010)CrossRefGoogle Scholar
  12. 12.
    ten Teije, A., Marcos, M., Balser, M., van Croonenborg, J., Duelli, C., van Harmelen, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang, A.: Improving medical protocols by formal methods. Artif. Intell. Med. 36(3), 193–209 (2006)CrossRefGoogle Scholar
  13. 13.
    Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: a manifesto. In: Vladimir, L. (ed.) Artificial Intelligence and Mathematical Theory of Computation, pp. 151–176. Academic Press Professional, Inc., Cambridge (1991)CrossRefGoogle Scholar
  14. 14.
    Dechter, R.: Constraint Processing. MIT Press, Cambridge (1989)MATHGoogle Scholar
  15. 15.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74970-7_38 CrossRefGoogle Scholar
  16. 16.
    British Thoracic Society and Scottish Intercollegiate Guidelines Network, QRG 141 - British Guideline on the Management of Asthma (2014)Google Scholar
  17. 17.
    Israel Medical Association: Clinical Practice Guidelines for Asthma Management. Harefuah (2000). (in Hebrew)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Szymon Wilk
    • 1
  • Adi Fux
    • 2
  • Martin Michalowski
    • 3
  • Mor Peleg
    • 2
  • Pnina Soffer
    • 2
  1. 1.Poznan University of TechnologyPoznanPoland
  2. 2.University of HaifaHaifaIsrael
  3. 3.MET Research GroupOttawaCanada

Personalised recommendations