Advertisement

Analyzing Perceived Intentions of Public Health-Related Communication on Twitter

  • Elena Viorica Epure
  • Rébecca Deneckere
  • Camille Salinesi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)

Abstract

The increasing population with chronic diseases and highly engaged in online communication has triggered an urge in healthcare to understand this phenomenon. We propose an automatic approach to analyze the perceived intentions behind public tweets. Our long-term goal is to create high-level, behavioral models of the health information consumers and disseminators, relevant to studies in narrative medicine and health information dissemination. The contributions of this paper are: (1) a validated intention taxonomy, derived from pragmatics and empirically adjusted to Twitter public communication; (2) a tagged health-related corpus of 1100 tweets; (3) an effective approach to automatically discover intentions from text, using supervised machine learning with discourse features only, independent of domain vocabulary. Reasoning on the results, we claim the transferability of our solution to other healthcare corpora, enabling thus more extensive studies in the concerned domains.

Keywords

Intention mining Text mining Natural language processing Classification Machine learning Twitter Speech acts Linguistics 

References

  1. 1.
    Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. J. 50(2), 179–211 (1991)CrossRefGoogle Scholar
  2. 2.
    Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press, Massachusetts (1987)Google Scholar
  3. 3.
    Calvert, J.K.: An ecological view of internet health information seeking behavior predictors: findings from the chain study. Open AIDS J. 7(1), 42–46 (2013)CrossRefGoogle Scholar
  4. 4.
    Cline, R.J.W.: Consumer health information seeking on the internet: the state of the art. Health Educ. Res. 16(6), 671–692 (2001)CrossRefGoogle Scholar
  5. 5.
    Ding, X., Liu, T., Duan, J., Nie, J.Y.: Mining user consumption intention from social media using domain adaptive convolutional neural network. In: The 29th AAAI Conference, pp. 2389–2395. AAAI Press (2015)Google Scholar
  6. 6.
    Fleiss, J.L., Cohen, J., Everitt, B.S.: Large sample standard errors of kappa and weighted kappa. Psychol. Bull. 72(5), 323–327 (1969)CrossRefGoogle Scholar
  7. 7.
    Fox, S., Duggan, M.: Health online 2013. Technical report, PEW (2017). http://www.pewinternet.org/2013/01/15/health-online-2013/
  8. 8.
    Gelman, A.: Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27(15), 2865–2873 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Godea, A.K., Caragea, C., Bulgarov, F.A., Ramisetty-Mikler, S.: An analysis of Twitter data on E-cigarette sentiments and promotion. In: Holmes, J.H., Bellazzi, R., Sacchi, L., Peek, N. (eds.) AIME 2015. LNCS (LNAI), vol. 9105, pp. 205–215. Springer, Cham (2015). doi: 10.1007/978-3-319-19551-3_27 CrossRefGoogle Scholar
  10. 10.
    Hemphill, L., Roback, A.J.: Tweet acts: how constituents lobby congress via Twitter. In: CSCW 2014, pp. 1200–1210. ACM, New York (2014)Google Scholar
  11. 11.
    Houghton, J., Siegel, M., Goldsmith, D.: Modeling the influence of narratives on collective behavior case study. In: International System Dynamics Conference (2013)Google Scholar
  12. 12.
    Kalitzkus, V.: Narrative-based medicine: potential, pitfalls, and practice. Perm. J. 13(1), 80 (2009)CrossRefGoogle Scholar
  13. 13.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: The 14th International Conference on WWW, pp. 342–351. ACM, New York (2005)Google Scholar
  14. 14.
    Murphy, J.: The role of clinical records in narrative medicine: a discourse of message. Perm. J. 20, 103 (2016)Google Scholar
  15. 15.
    Myslin, M., Zhu, S.H., Chapman, W., Conway, M.: Using Twitter to examine smoking behavior and perceptions of emerging tobacco products. Med. Internet Res. 15(8), e174 (2013)CrossRefGoogle Scholar
  16. 16.
    O’Keefe, D., Jensen, J., Jakob, D.: The relative persuasiveness of gain-framed loss-framed messages for encouraging disease prevention behaviors. Health Commun. J. 12(7), 623–644 (2007)CrossRefGoogle Scholar
  17. 17.
    Owoputi, O., Dyer, C., Gimpel, K., Schneider, N., Smith, N.: Improved part-of-speech tagging for online conversational text with word clusters. In: NAACL (2013)Google Scholar
  18. 18.
    Perrin, A., Duggan, M., Greenwood, S.: Social media update 2016. Technical report, PEW (2017). http://www.pewinternet.org/2016/11/11/social-media-update-2016/
  19. 19.
    Prieto, V.M., Matos, S., Alvarez, M., Cacheda, F., Oliveira, J.L.: Twitter: a good place to detect health conditions. PLOS ONE 9(1), 1–11 (2014)Google Scholar
  20. 20.
    Ridpath, J.R., Wiese, C.J., Greene, S.M.: Looking at research consent forms through a participant-centered lens. J. Health Promot. 23(6), 371–375 (2009)CrossRefGoogle Scholar
  21. 21.
    Searle, J.R.: Speech Acts, vol. 1. Cambridge University Press, Cambridge (1969)CrossRefGoogle Scholar
  22. 22.
    Vanderveken, D.: Meaning and Speech Acts. Cambridge University Press, Cambridge (1990)Google Scholar
  23. 23.
    Wang, J., Cong, G., Zhao, W.X., Li, X.: Mining user intents in Twitter. In: The 29th AAAI Conference, pp. 318–324. AAAI Press (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elena Viorica Epure
    • 1
  • Rébecca Deneckere
    • 1
  • Camille Salinesi
    • 1
  1. 1.Université Paris 1 Panthéon-Sorbonne, CRIParisFrance

Personalised recommendations