Skip to main content

Neurophysiological Monitoring During Placement of Spinal Instrumentation

  • Chapter
  • First Online:
Essentials of Spinal Stabilization
  • 1248 Accesses

Abstract

Neurophysiologic intraoperative monitoring improves postoperative outcomes by alerting the surgeon to increased risk of neurologic injury. Neurodiagnostic monitoring techniques for spine surgery include somatosensory evoked potentials (SEP), transcranial electrical motor evoked potentials (MEP), and electromyography (EMG).

Monitoring teams understand tactics for obtaining quality recordings and raising alarms when change progresses beyond recognized limits of normal variation. Surgeons and anesthesiologists respond to monitoring alerts with a variety of actions, some as straightforward as raising blood pressure or adjusting retractors. In experienced hands, neurophysiologic intraoperative monitoring substantially reduces postoperative deficits, e.g., 60% reduction in risk of paraplegia and paraparesis.

Monitoring is set up by a technologist in the operating room and supervised by an experienced clinical neurophysiologist. In straightforward cases, the monitoring neurophysiologist may remotely monitor from outside the operating room.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz DM, Sestokas AK, Hilibrand AS, Vaccaro AR, Bose B, Li M, Albert TJ. Neurophysiological identification of position-induced neurologic injury during anterior cervical spine surgery. J Clin Monit Comput. 2006;20(6):437–44.

    Article  PubMed  Google Scholar 

  2. Nuwer MR, Dawson EG. Intraoperative evoked potential monitoring of the spinal cord: enhanced stability of cortical recordings. Electroencephalogr Clin Neurophysiol. 1984;59:318–27.

    Article  CAS  PubMed  Google Scholar 

  3. Nuwer MR, Comi G, Emerson R, Fuglsang-Frederiksen A, Guérit JM, Hinrichs H, Ikeda A, Luccas FJC, Rappelsberger PIFCN. Standards for digital recording of clinical EEG. Electroencephalogr Clin Neurophysiol. 1998;106:259–61.

    Article  CAS  PubMed  Google Scholar 

  4. Nuwer MR, Aminoff M, Desmedt J, et al. IFCN recommended standards for short latency somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol. 1994;91:6–11.

    Article  CAS  PubMed  Google Scholar 

  5. Ziewacz JE, Berven SH, Mummaneni VP, Tu T-H, Akinbo OC, Lyon R, Mummaneni PV. The design, development, and implementation of a checklist for intraoperative neuromonitoring changes. Neurosurg Focus. 2012;33:1–10.

    Article  Google Scholar 

  6. MacDonald DB. Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol. 2002;19:416–29.

    Article  PubMed  Google Scholar 

  7. Yellin JL, Wiggins CR, Franco AJ, Sankar WN. Safe transcranial electric stimulation motor evoked potential monitoring during posterior spinal fusion in two patients with cochlear implants. J Clin Monit Comput. 2016;30:503–6.

    Article  PubMed  Google Scholar 

  8. MacDonald DB. Overview on criteria for MEP monitoring. J Clin Neurophysiol. 2017;34:4–11.

    Article  PubMed  Google Scholar 

  9. Journée HL, Berends HI, Kruyt MC. The percentage of amplitude decrease warning criteria for transcranial MEP monitoring. J Clin Neurophysiol. 2017;34:22–31.

    Article  PubMed  Google Scholar 

  10. Kobayashi S, Matsuyama Y, Shinomiya K, et al. A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: a prospective multicenter study from the spinal cord monitoring working Group of the Japanese Society for spine surgery and related research. J Neurosurg Spine. 2014;20:102–7.

    Article  PubMed  Google Scholar 

  11. Calancie B. Intraoperative neuromonitoring and alarm criteria for judging MEP responses to transcranial electric stimulation: the threshold-level method. J Clin Neurophsiol. 2017;34:12–21.

    Article  Google Scholar 

  12. Kothbauer KF. The interpretation of muscle motor evoked potentials for spinal cord monitoring. J Clin Neurophysiol. 2017;34:32–7.

    Article  PubMed  Google Scholar 

  13. Sala F, Palandri G, Basso E, et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58:1129–43.

    Article  PubMed  Google Scholar 

  14. Segura MJ, Talarico ME, Noel MA. A multiparametric alarm criterion for motor evoked potential monitoring during spine deformity surgery. J Clin Neurophysiol. 2017;34:38–48.

    Article  PubMed  Google Scholar 

  15. Mikula AL, Williams SK, Anderson PA. The use of intraoperative triggered electromyography to detect misplaced pedicle screws: a systematic review and meta-analysis. J Neurosurg Spine. 2016;24:624–38.

    Article  PubMed  Google Scholar 

  16. Daube JR, Harper CM. Surgical monitoring of cranial and peripheral nerves. In: Desmedt JE, editor. Neuromonitoring in surgery. Amsterdam: Elsevier; 1989. p. 115–38.

    Google Scholar 

  17. Crum BA, Strommen JA. Peripheral nerve stimulation and monitoring during operative procedures. Muscle Nerve. 2007;35:159–70.

    Article  PubMed  Google Scholar 

  18. Coles JG, Wilson GJ, Sima AF, Klement P, Tait GA. Intraoperative detection of spinal cord ischemia using somatosensory cortical evoked potentials during thoracic aortic occlusion. Ann Thorac Surg. 1982;34:299–306.

    Article  CAS  PubMed  Google Scholar 

  19. Kojima Y, Yamamoto T, Ogino H, Okada K, Ono K. Evoked spinal potentials as a monitor of spinal cord viability. Spine. 1979;4:471–7.

    Article  CAS  PubMed  Google Scholar 

  20. Laschinger JC, Cunningham JN Jr, Catinella FP, Nathan IM, Knopp EA, Spencer FC. Detection and prevention of intraoperative spinal cord ischemia after cross-clamping of the thoracic aorta: use of somatosensory evoked potentials. Surgery. 1982;92:1109–17.

    CAS  PubMed  Google Scholar 

  21. Cheng MK, Robertson C, Grossman RG, Foltz R, Williams V. Neurological outcome correlated with spinal evoked potentials in a spinal cord ischemia model. J Neurosurg. 1984;60:786–95.

    Article  CAS  PubMed  Google Scholar 

  22. Nordwall A, Axelgaard J, Harada Y, Valencia P, McNeal DR, Brown JC. Spinal cord monitoring using evoked potentials recorded from feline vertebral bone. Spine. 1979;4:486–94.

    Article  CAS  PubMed  Google Scholar 

  23. Bennett MH. Effects of compression and ischemia on spinal cord evoked potentials. Exp Neurol. 1983;80:508–19.

    Article  CAS  PubMed  Google Scholar 

  24. Nuwer MR, Dawson EG, Carlson LG, Kanim LEA, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96:6–11.

    Article  CAS  PubMed  Google Scholar 

  25. Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, Yamada T, Goodin DS, Armon C, Chaudhry V, Gronseth GS, Harden CL. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. J Clin Neurophysiol. 2012;29:101–8.

    Article  PubMed  Google Scholar 

  26. Cunningham JN Jr, Laschinger JC, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoracoabdominal aorta. IV: clinical observations and results. J Thorac Cardiovasc Surg. 1987;94:275–85.

    PubMed  Google Scholar 

  27. Sutter M, Eggspuehler A, Grob D, et al. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors. Eur Spine J. 2007;16:S197–208.

    Article  PubMed  Google Scholar 

  28. Costa P, Bruno A, Bonzanino M, et al. Somatosensory- and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal Cord. 2007;45:86–91.

    Article  CAS  PubMed  Google Scholar 

  29. Weinzierl MR, Reinacher P, Gilsbach JM, Rohde V. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev. 2007;30:109–16.

    Article  CAS  PubMed  Google Scholar 

  30. Etz CD, Halstead JC, Spielvogel D, et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82:1670–8.

    Article  PubMed  Google Scholar 

  31. May DM, Jones SJ, Crockard HA. Somatosensory evoked potential monitoring in cervical surgery: identification of pre- and post-operative risk factors associated with neurological deterioration. J Neurosurg. 1996;85:566–73.

    Article  CAS  PubMed  Google Scholar 

  32. Lee JY, Hilibrand AS, Lim MR, et al. Characterization of neurophysiologic alerts during anterior cervical spine surgery. Spine. 2006;31:1916–22.

    Article  PubMed  Google Scholar 

  33. Pelosi L, Lamb J, Grevitt M, Mehdian SMH, Webb JK, Blumhardt LD. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol. 2002;113:1082–91.

    Article  PubMed  Google Scholar 

  34. Hilibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ. Comparison of transcranial electrical motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surg. 2004;86A:1248–53.

    Article  Google Scholar 

  35. Jacobs MJ, Elenbass TW, Schurink GWH, Mess WH, Mochtar B. Assessment of spinal cord integrity during thoracoabdominal aortic aneurysm repair. Ann Thorac Surg. 2000;74:S1864–6.

    Article  Google Scholar 

  36. Langeloo DD, Lelivelt A, Journee L, Slappendel R, de Kleuver M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine. 2003;28:1043–50.

    PubMed  Google Scholar 

  37. Khan MH, Smith PN, Balzer JB, et al. Intraoperative somatosensory evoked potential monitoring during cervical spine corpectomy surgery: experience with 508 cases. Spine. 2006;31:E105–13.

    Article  PubMed  Google Scholar 

  38. Pastorelli F, Di Silvestre M, Plasmati R, et al. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20:S105–14.

    Article  PubMed  Google Scholar 

  39. Lee HJ, Kim IS, Sung JH, Lee SW, Hong JT. Significance of multimodal intraoperative monitoring for the posterior cervical spine surgery. Clin Neurol Neurosurg. 2016;143:9–14.

    Article  PubMed  Google Scholar 

  40. Nuwer MR, Cohen BH, Shepard KM. Practice patterns for intraoperative neurophysiologic monitoring. Neurology. 2013;80:1156–60.

    Article  PubMed  Google Scholar 

  41. American Clinical Neurophysiology Society. Guideline 11A: recommended standards for neurophysiologic intraoperative monitoring – principles. 1994. Available from: http://www.acns.org/pdf/guidelines/Guideline-11A.pdf

  42. Modi HN, Suh SW, Yang JH, Yoon JY. False-negative transcranial motor evoked potentials during scoliosis surgery causing paralysis. Spine. 2009;34:E896–900.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc R. Nuwer MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nuwer, M.R. (2017). Neurophysiological Monitoring During Placement of Spinal Instrumentation. In: Holly, L., Anderson, P. (eds) Essentials of Spinal Stabilization . Springer, Cham. https://doi.org/10.1007/978-3-319-59713-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59713-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59712-6

  • Online ISBN: 978-3-319-59713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics