Skip to main content

Basic Science of Bone Fusion

  • Chapter
  • First Online:
Essentials of Spinal Stabilization

Abstract

Spine arthrodesis is frequently performed in the treatment of spine trauma, deformity, and degenerative disorders. With an estimated 413,000 fusion procedures performed in the United States annually, the number of procedures performed has increased by 2.4-fold since 1998. Based on its prevalence, it is critical that spine surgeons have an adequate understanding of the basic science behind bone fusion. This chapter will review basic bone anatomy and histology, discuss the principles and process of bone healing, and explore the clinical applications of these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajaee SS, Bae HW, Kanim LEA, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012;37(1):67–76.

    Article  PubMed  Google Scholar 

  2. Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT. 1997 Volvo award winner in clinical studies: degenerative lumbar Spondylolisthesis with spinal stenosis: a Prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine. 1997;22(24):2807–12.

    Article  CAS  PubMed  Google Scholar 

  3. Kornblum MB, Fischgrund JS, Herkowitz HN, Abraham DA, Berkower DL, Ditkoff JS. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis. Spine. 2004;29(7):726–33.

    Article  PubMed  Google Scholar 

  4. Berjano P, Langella F Damilano M, Pejrona M, Buric J, Ismael M, Villafane JH, et al. Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J. 2015. (1432–0932 (Electronic)).

    Google Scholar 

  5. Grubb SA, Hj L, Suh PB. Results of surgical treatment of painful adult scoliosis. Spine (Phila Pa 1976). (0362–2436 (Print))

    Google Scholar 

  6. Herkowitz HN, Sidhu KS. Lumbar spine fusion in the treatment of degenerative conditions: current indications and recommendations. J Am Acad Orthop Surg. (1940–5480 (Electronic))

    Google Scholar 

  7. Aghdasi B, Montgomery SR, Daubs MD, Wang JC. A review of demineralized bone matrices for spinal fusion: the evidence for efficacy. Surgeon J R Coll Surg Edinb Irel. 2013;11(1):39–48.

    CAS  Google Scholar 

  8. McAnany SJ, Baird EO, Overley SC, Kim JS, Qureshi SA, Anderson PA. A meta-analysis of the clinical and fusion results following treatment of symptomatic cervical Pseudarthrosis. Global Spine J. 2015;5(2):148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pavelka M, Roth J. Bone. In: Functional ultrastructure. Vienna: Springer; 2015. p. 336–9.

    Google Scholar 

  10. Dickson GR. Bailey’s textbook of histology. J Anat. 1979;129((Pt 1)):189.

    PubMed Central  Google Scholar 

  11. Ross MH, Pawlina W. Histology : a text and atlas : with correlated cell and molecular biology, vol. xviii. 6th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2011. 974p.

    Google Scholar 

  12. Klein-Nulend J, Nijweide PJ, Burger EH. Osteocyte and bone structure. Curr Osteoporos Rep. 2003;1(1):5–10.

    Article  PubMed  Google Scholar 

  13. Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn Off Publ Am Assoc Anat. 2006;235(1):176–90.

    CAS  Google Scholar 

  14. Aarden EM, Burger EH, Nijweide PJ. Function of osteocytes in bone. J Cell Biochem. 1994;55(3):287–99.

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi G, Di Somma C, Rubino M, Faggiano A, Vuolo L, Guerra E, et al. The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Investig. 2011;34(7 Suppl):18–22.

    CAS  Google Scholar 

  16. Morley P, Whitfield JF, Willick GE. Parathyroid hormone: an anabolic treatment for osteoporosis. Curr Pharm Des. 2001;7(8):671–87.

    Article  CAS  PubMed  Google Scholar 

  17. Sowa H, Kaji H, Iu MF, Tsukamoto T, Sugimoto T, Chihara K. Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor beta in osteoblasts. J Biol Chem. 2003;278(52):52240–52.

    Article  CAS  PubMed  Google Scholar 

  18. Sexton PM, Findlay DM, Martin TJ. Calcitonin. Curr Med Chem. 1999;6(11):1067–93.

    CAS  PubMed  Google Scholar 

  19. Pondel M. Calcitonin and calcitonin receptors: bone and beyond. Int J Exp Pathol. 2000;81(6):405–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 2011;25(4):543–59.

    Article  CAS  PubMed  Google Scholar 

  21. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gorter EA, Hamdy NA, Appelman-Dijkstra NM, Schipper IB. The role of vitamin D in human fracture healing: a systematic review of the literature. Bone. 2014;64:288–97.

    Article  CAS  PubMed  Google Scholar 

  23. Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res. 1996;324:66–74.

    Article  Google Scholar 

  24. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013;37(12):2491–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A. 1990;87(6):2220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reddi AH, Cunningham NS. Initiation and promotion of bone differentiation by bone morphogenetic proteins. J Bone Miner Res Off J Am Soc Bone Miner Res. 1993;8(Suppl 2):S499–502.

    Google Scholar 

  27. Rihn JA, Kirkpatrick K, Albert TJ. Graft options in posterolateral and posterior interbody lumbar fusion. Spine (Phila Pa 1976). 2010;35(17):1629–39.

    Article  Google Scholar 

  28. Sykaras N, Opperman LA. Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci. 2003;45(2):57–73.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffmann A, Gross G. BMP signaling pathways in cartilage and bone formation. Crit Rev Eukaryot Gene Expr. 2001;11(1–3):23–45.

    CAS  PubMed  Google Scholar 

  30. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Joint J. 2016;98-b(1 Suppl A):6–9.

    Article  CAS  PubMed  Google Scholar 

  31. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86.

    Article  PubMed  Google Scholar 

  32. McKee MD. Management of segmental bony defects: the role of osteoconductive orthobiologics. J Am Acad Orthop Surg. 2006;14(10):S163–S7.

    Article  PubMed  Google Scholar 

  33. Boden SD, Schimandle JH, Hutton WC. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine (Phila Pa 1976). 1995;20(4):412–20.

    Article  CAS  Google Scholar 

  34. Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci. 2015;28(1):57–71.

    PubMed  Google Scholar 

  35. Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14(2):179–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kwong FN, Harris MB. Recent developments in the biology of fracture repair. J Am Acad Orthop Surg. 2008;16(11):619–25.

    Article  PubMed  Google Scholar 

  37. Goldhahn J, Feron JM, Kanis J, Papapoulos S, Reginster JY, Rizzoli R, et al. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int. 2012;90(5):343–53.

    Article  CAS  PubMed  Google Scholar 

  38. LaStayo PC, Winters KM, Hardy M. Fracture healing: bone healing, fracture management, and current concepts related to the hand. J Hand Ther.Off J Am Soc Hand Ther. 2003;16(2):81–93.

    Article  Google Scholar 

  39. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;355 Suppl S132–47.

    Google Scholar 

  40. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg. 1985;67(4):650–5.

    Article  CAS  Google Scholar 

  41. Gaston M, Simpson A. Inhibition of fracture healing. J Bone Joint Surg Br. 2007;89(12):1553–60.

    Article  CAS  PubMed  Google Scholar 

  42. Pountos I, Georgouli T, Blokhuis TJ, Pape HC, Giannoudis PV. Pharmacological agents and impairment of fracture healing: what is the evidence? Injury. 2008;39(4):384–94.

    Article  PubMed  Google Scholar 

  43. Hsu EL, Sonn K, Kannan A, Bellary S, Yun C, Hashmi S, et al. Dioxin exposure impairs BMP-2-mediated spinal fusion in a rat arthrodesis model. J Bone Joint Surg Am. 2015;97(12):1003–10.

    Article  PubMed  Google Scholar 

  44. Geusens P, Emans PJ, de Jong JJ, van den Bergh J. NSAIDs and fracture healing. Curr Opin Rheumatol. 2013;25(4):524–31.

    Article  CAS  PubMed  Google Scholar 

  45. Einhorn TA, Boskey AL, Gundberg CM, Vigorita VJ, Devlin VJ, Beyer MM. The mineral and mechanical properties of bone in chronic experimental diabetes. J Orthop Res Off Publ Orthop ResSoc. 1988;6(3):317–23.

    Article  CAS  Google Scholar 

  46. Jones CM, Eaton FB. Postoperative nutritional edema. Arch Surg. 1933;27(1):159–77.

    Article  Google Scholar 

  47. Khuri SF, Daley J, Henderson W, Barbour G, Lowry P, Irvin G, et al. The National Veterans Administration Surgical Risk Study: risk adjustment for the comparative assessment of the quality of surgical care. J Am Coll Surg. 1995;180(5):519–31.

    CAS  PubMed  Google Scholar 

  48. Mullen JL, Gertner MH, Buzby GP, Goodhart GL, Rosato EF. Implications of malnutrition in the surgical patient. Arch Surg. 1979;114(2):121–5.

    Article  CAS  PubMed  Google Scholar 

  49. Guo JJ, Yang H, Qian H, Huang L, Guo Z, Tang T. The effects of different nutritional measurements on delayed wound healing after hip fracture in the elderly. J Surg Res. 2010;159(1):503–8.

    Article  CAS  PubMed  Google Scholar 

  50. Jensen JE, Jensen TG, Smith TK, Johnston DA, Dudrick SJ. Nutrition in orthopaedic surgery. J Bone Joint Surg Am. 1982;64(9):1263–72.

    Article  CAS  PubMed  Google Scholar 

  51. Smith TK. Prevention of complications in orthopedic surgery secondary to nutritional depletion. Clin Orthop Relat Res. 1987;222:91–7.

    Google Scholar 

  52. Klein JD, Hey LA, Yu CS, Klein BB, Coufal FJ, Young EP, et al. Perioperative nutrition and postoperative complications in patients undergoing spinal surgery. Spine (Phila Pa 1976). 1996;21(22):2676–82.

    Article  CAS  Google Scholar 

  53. Harris D, Haboubi N. Malnutrition screening in the elderly population. J R Soc Med. 2005;98(9):411–4.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goldwasser P, Feldman J. Association of serum albumin and mortality risk. J Clin Epidemiol. 1997;50(6):693–703.

    Article  CAS  PubMed  Google Scholar 

  55. Adogwa O, Martin JR, Huang K, Verla T, Fatemi P, Thompson P, et al. Preoperative serum albumin level as a predictor of postoperative complication after spine fusion. Spine (Phila Pa 1976). 2014;39(18):1513–9.

    Article  Google Scholar 

  56. Kamath AF, McAuliffe CL, Kosseim LM, Pio F, Hume E. Malnutrition in joint Arthroplasty: prospective study indicates risk of unplanned ICU admission. Arch Bone Jt Surg. 2016;4(2):128–31.

    PubMed  PubMed Central  Google Scholar 

  57. Gariballa SE, Sinclair AJ. Nutrition, ageing and ill health. Br J Nutr. 1998;80(1):7–23.

    Article  CAS  PubMed  Google Scholar 

  58. Nieuwenhuizen WF, Weenen H, Rigby P, Hetherington MM. Older adults and patients in need of nutritional support: review of current treatment options and factors influencing nutritional intake. Clin Nutr. 2010;29(2):160–9.

    Article  PubMed  Google Scholar 

  59. Norman K, Kirchner H, Freudenreich M, Ockenga J, Lochs H, Pirlich M. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease--a randomized controlled trial. Clin Nutr. 2008;27(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  60. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353–73.

    Article  CAS  PubMed  Google Scholar 

  61. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  PubMed  Google Scholar 

  62. Bogunovic L, Kim AD, Beamer BS, Nguyen J, Lane JM. Hypovitaminosis D in patients scheduled to undergo orthopaedic surgery: a single-center analysis. J Bone Joint Surg Am. 2010;92(13):2300–4.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ponnusamy KE, Iyer S, Gupta G, Khanna AJ. Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J Off J N Am Spine Soc. 2011;11(1):54–63.

    Article  Google Scholar 

  64. Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR. Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J Off J N Am Spine Soc. 2009;9(7):537–44.

    Article  Google Scholar 

  65. Kim TH, Lee BH, Lee HM, Lee SH, Park JO, Kim HS, et al. Prevalence of vitamin D deficiency in patients with lumbar spinal stenosis and its relationship with pain. Pain Physician. 2013;16(2):165–76.

    PubMed  Google Scholar 

  66. Ravindra VM, Godzik J, Guan J, Dailey AT, Schmidt MH, Bisson EF, et al. Prevalence of vitamin D deficiency in patients undergoing elective spine surgery: a cross-sectional analysis. World Neurosurg. 2015;83(6):1114–9.

    Article  PubMed  Google Scholar 

  67. Erben RG, Bromm S, Stangassinger M. Therapeutic efficacy of 1alpha,25-dihydroxyvitamin D3 and calcium in osteopenic ovariectomized rats: evidence for a direct anabolic effect of 1alpha,25-dihydroxyvitamin D3 on bone. Endocrinology. 1998;139(10):4319–28.

    Article  CAS  PubMed  Google Scholar 

  68. Erben RG, Scutt AM, Miao D, Kollenkirchen U, Haberey M. Short-term treatment of rats with high dose 1,25-dihydroxyvitamin D3 stimulates bone formation and increases the number of osteoblast precursor cells in bone marrow. Endocrinology. 1997;138(11):4629–35.

    Article  CAS  PubMed  Google Scholar 

  69. Fu L, Tang T, Miao Y, Hao Y, Dai K. Effect of 1,25-dihydroxy vitamin D3 on fracture healing and bone remodeling in ovariectomized rat femora. Bone. 2009;44(5):893–8.

    Article  CAS  PubMed  Google Scholar 

  70. Omeroglu H, Omeroglu S, Korkusuz F, Ates Y. Effect of 25-OH-vitamin D on fracture healing in elderly rats. J Orthop Res Off Publ Orthop ResSoc. 1999;17(5):795.

    CAS  Google Scholar 

  71. Metzger MF, Kanim LE, Zhao L, Robinson ST, Delamarter RB. The relationship between serum vitamin D levels and spinal fusion success: a quantitative analysis. Spine (Phila Pa 1976). 2015;40(8):E458–68.

    Article  Google Scholar 

  72. Rosen CJ. Clinical practice. Vitamin D insufficiency. N Engl J Med. 2011;364(3):248–54.

    Article  CAS  PubMed  Google Scholar 

  73. Rodriguez WJ, Gromelski J. Vitamin D status and spine surgery outcomes. ISRN Orthop. 2013;2013:12.

    Article  Google Scholar 

  74. Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J Am Coll Cardiol. 2014;64(16):1740–50.

    Article  CAS  PubMed  Google Scholar 

  75. Sasco AJ, Secretan MB, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer. 2004;45(Suppl 2):S3–9.

    Article  PubMed  Google Scholar 

  76. Porter SE, Hanley EN Jr. The musculoskeletal effects of smoking. J Am Acad Orthop Surg. 2001;9(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  77. Sloan A, Hussain I, Maqsood M, Eremin O, El-Sheemy M. The effects of smoking on fracture healing. Surgeon J R Coll Surg Edinb Irel. 2010;8(2):111–6.

    CAS  Google Scholar 

  78. Schmitz MA, Finnegan M, Natarajan R, Champine J. Effect of smoking on tibial shaft fracture healing. Clin Orthop Relat Res. 1999;365:184–200.

    Article  Google Scholar 

  79. Martin CT, Gao Y, Duchman KR, Pugely AJ. The impact of current smoking and of smoking cessation on short-term morbidity risk after lumbar spine surgery. Spine. 2016;41(7):577–84. 

    Google Scholar 

  80. Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR. The effect of cigarette smoking and smoking cessation on spinal fusion. Spine (Phila Pa 1976). 2000;25(20):2608–15.

    Article  CAS  Google Scholar 

  81. Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM, Group LS. Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma. 2005;19(3):151–7.

    Article  PubMed  Google Scholar 

  82. Zevin S, Gourlay SG, Benowitz NL. Clinical pharmacology of nicotine. Clin Dermatol. 1998;16(5):557–64.

    Article  CAS  PubMed  Google Scholar 

  83. Jorgensen LN, Kallehave F, Christensen E, Siana JE, Gottrup F. Less collagen production in smokers. Surgery. 1998;123(4):450–5.

    Article  CAS  PubMed  Google Scholar 

  84. Leow YH, Maibach HI. Cigarette smoking, cutaneous vasculature, and tissue oxygen. Clin Dermatol. 1998;16(5):579–84.

    Article  CAS  PubMed  Google Scholar 

  85. Bornmyr S, Svensson H. Thermography and laser-Doppler flowmetry for monitoring changes in finger skin blood flow upon cigarette smoking. Clin Physiol. 1991;11(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  86. Syversen U, Nordsletten L, Falch JA, Madsen JE, Nilsen OG, Waldum HL. Effect of lifelong nicotine inhalation on bone mass and mechanical properties in female rat femurs. Calcif Tissue Int. 1999;65(3):246–9.

    Article  CAS  PubMed  Google Scholar 

  87. Rothem DE, Rothem L, Soudry M, Dahan A, Eliakim R. Nicotine modulates bone metabolism-associated gene expression in osteoblast cells. J Bone Miner Metab. 2009;27(5):555–61.

    Article  CAS  PubMed  Google Scholar 

  88. Holzer N, Braun KF, Ehnert S, Egana JT, Schenck TL, Buchholz A, et al. Green tea protects human osteoblasts from cigarette smoke-induced injury: possible clinical implication. Langenbeck's Arch Surg. 2012;397(3):467–74.

    Article  Google Scholar 

  89. Jamsa T, Viluksela M, Tuomisto JT, Tuomisto J, Tuukkanen J. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on bone in two rat strains with different aryl hydrocarbon receptor structures. J Bone Miner Res. 2001;16(10):1812–20.

    Article  CAS  PubMed  Google Scholar 

  90. Moller AM, Villebro N, Pedersen T, Tonnesen H. Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial. Lancet. 2002;359(9301):114–7.

    Article  PubMed  Google Scholar 

  91. Jha S, Wang Z, Laucis N, Bhattacharyya T. Trends in media reports, oral bisphosphonate prescriptions, and hip fractures 1996-2012: an ecological analysis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30(12):2179–87.

    Article  CAS  Google Scholar 

  92. van der Poest CE, Patka P, Vandormael K, Haarman H, Lips P. The effect of alendronate on bone mass after distal forearm fracture. J Bone Miner Res Off J Am Soc Bone Miner Res. 2000;15(3):586–93.

    Google Scholar 

  93. Watkins MP, Norris JY, Grimston SK, Zhang X, Phipps RJ, Ebetino FH, et al. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice. Bone. 2012;51(4):787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schilcher J, Koeppen V, Aspenberg P, Michaëlsson K. Risk of atypical femoral fracture during and after bisphosphonate use. N Engl J Med. 2014;371(10):974–6.

    Article  PubMed  Google Scholar 

  95. Xue D, Li F, Chen G, Yan S, Pan Z. Do bisphosphonates affect bone healing? A meta-analysis of randomized controlled trials. J Orthop Surg Res. 2014;9:45.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Komatsubara S, Mori S, Mashiba T, Nonaka K, Seki A, Akiyama T, et al. Human parathyroid hormone (1-34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone. 2005;36(4):678–87.

    Article  CAS  PubMed  Google Scholar 

  97. Andreassen TT, Willick GE, Morley P, Whitfield JF. Treatment with parathyroid hormone hPTH(1-34), hPTH(1-31), and monocyclic hPTH(1-31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase. Calcif Tissue Int. 2004;74(4):351–6.

    Article  CAS  PubMed  Google Scholar 

  98. Babu S, Sandiford NA, Vrahas M. Use of Teriparatide to improve fracture healing: what is the evidence? World J Orthop. 2015;6(6):457–61.

    PubMed  PubMed Central  Google Scholar 

  99. Haddad JB, Obolensky AG, Shinnick P. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. J Altern Complement Med. 2007;13(5):485–90.

    Article  PubMed  Google Scholar 

  100. Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:30–7.

    Article  Google Scholar 

  101. Aleem IS, Aleem I, Evaniew N, Busse JW, Yaszemski M, Agarwal A, et al. Efficacy of electrical stimulators for bone healing: a meta-analysis of randomized sham-controlled trials. Sci Rep. 2016;6:31724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Weiner MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Weiner, J.A., Hsu, W.K. (2017). Basic Science of Bone Fusion. In: Holly, L., Anderson, P. (eds) Essentials of Spinal Stabilization . Springer, Cham. https://doi.org/10.1007/978-3-319-59713-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59713-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59712-6

  • Online ISBN: 978-3-319-59713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics