Skip to main content

Posterior Thoracic Spinal Fixation

  • Chapter
  • First Online:

Abstract

The posterior approach to the thoracic spine is well established and is the workhorse for many spine surgeons. Posterior thoracic spinal fixation is used to restore spinal stability when its mechanical functions are disrupted by trauma, tumor, infection, degenerative disease, deformity, or surgical management of these disorders. Safe and effective instrumentation of the thoracic spine requires a thorough understanding of its anatomy and biomechanical properties. Complications associated with posterior thoracic spinal instrumentation can be broken down into several main categories: (1) patient positioning, (2) thoracic spine exposure, (3) instrumentation, and (4) postoperative.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Whitesides TE Jr. Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res. 1977;128:78–92.

    Google Scholar 

  2. An HS, Singh K, Vaccaro AR, Wang G, Yoshida H, Eck J, et al. Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws. Spine (Phila Pa 1976). 2004;29(3):257–62.

    Article  Google Scholar 

  3. Hitchon PW, Brenton MD, Black AG, From A, Harrod JS, Barry C, et al. In vitro biomechanical comparison of pedicle screws, sublaminar hooks, and sublaminar cables. J Neurosurg. 2003;99(1 Suppl):104–9.

    PubMed  Google Scholar 

  4. Karatoprak O, Unay K, Tezer M, Ozturk C, Aydogan M, Mirzanli C. Comparative analysis of pedicle screw versus hybrid instrumentation in adolescent idiopathic scoliosis surgery. Int Orthop. 2008;32(4):523–8. discussion 9

    Article  PubMed  Google Scholar 

  5. Gurr KR, McAfee PC, Shih CM. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. J Bone Joint Surg Am. 1988;70(8):1182–91.

    Article  CAS  PubMed  Google Scholar 

  6. Gurr KR, McAfee PC, Shih CM. Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. J Bone Joint Surg Am. 1988;70(5):680–91.

    Article  CAS  PubMed  Google Scholar 

  7. Lee SM, Suk SI, Chung ER. Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2004;29(3):343–9.

    Article  Google Scholar 

  8. Liljenqvist U, Hackenberg L, Link T, Halm H. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg. 2001;67(2):157–63.

    CAS  PubMed  Google Scholar 

  9. Rampersaud YR, Simon DA, Foley KT. Accuracy requirements for image-guided spinal pedicle screw placement. Spine (Phila Pa 1976). 2001;26(4):352–9.

    Article  CAS  Google Scholar 

  10. Ebraheim NA, Jabaly G, Xu R, Yeasting RA. Anatomic relations of the thoracic pedicle to the adjacent neural structures. Spine (Phila Pa 1976). 1997;22(14):1553–6. discussion 7

    Article  CAS  Google Scholar 

  11. Liljenqvist U, Hackenberg L. Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis. Stud Health Technol Inform. 2002;88:382–6.

    CAS  PubMed  Google Scholar 

  12. Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, et al. Placement of pedicle screws in the thoracic spine. Part I: morphometric analysis of the thoracic vertebrae. J Bone Joint Surg Am. 1995;77(8):1193–9.

    Article  CAS  PubMed  Google Scholar 

  13. Vaccaro AR, Rizzolo SJ, Balderston RA, Allardyce TJ, Garfin SR, Dolinskas C, et al. Placement of pedicle screws in the thoracic spine. Part II: an anatomical and radiographic assessment. J Bone Joint Surg Am. 1995;77(8):1200–6.

    Article  CAS  PubMed  Google Scholar 

  14. Ebraheim NA, Xu R, Ahmad M, Yeasting RA. Projection of the thoracic pedicle and its morphometric analysis. Spine (Phila Pa 1976). 1997;22(3):233–8.

    Article  CAS  Google Scholar 

  15. Vaccaro AR, Lehman RA Jr, Hurlbert RJ, Anderson PA, Harris M, Hedlund R, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976). 2005;30(20):2325–33.

    Article  Google Scholar 

  16. Kalanithi PA, Arrigo R, Boakye M. Morbid obesity increases cost and complication rates in spinal arthrodesis. Spine (Phila Pa 1976). 2012;37(11):982–8.

    Article  Google Scholar 

  17. Magee DJ. Orthopedic physical assessment. Philadelphia: Saunders; 2002.

    Google Scholar 

  18. Hoppenfeld SDP, Hutton R. Surgical exposures in Orthopaedics: the anatomic approach. 2nd ed. Philadelphia: JB Lippincott; 1994.

    Google Scholar 

  19. Kim DH. Surgical anatomy and techniques to the spine. Philadelphia: WB Saunders; 2006.

    Google Scholar 

  20. Whang PG, Vaccaro AR. Thoracolumbar fracture: posterior instrumentation using distraction and ligamentotaxis reduction. J Am Acad Orthop Surg. 2007;15(11):695–701.

    Article  PubMed  Google Scholar 

  21. White AAPM. Clinical biomechanics of the spine. 3rd ed. Philadelphia: JB Lippincott; 1990.

    Google Scholar 

  22. Xu R, Ebraheim NA, Shepherd ME, Yeasting RA. Thoracic pedicle screw placement guided by computed tomographic measurements. J Spinal Disord. 1999;12(3):222–6.

    CAS  PubMed  Google Scholar 

  23. Sucato DJ, Duchene C. The position of the aorta relative to the spine: a comparison of patients with and without idiopathic scoliosis. J Bone Joint Surg Am. 2003;85-A(8):1461–9.

    Article  PubMed  Google Scholar 

  24. Charles YP, Barbe B, Beaujeux R, Boujan F, Steib JP. Relevance of the anatomical location of the Adamkiewicz artery in spine surgery. Surg Radiol Anat. 2011;33(1):3–9.

    Article  PubMed  Google Scholar 

  25. Watkins R, Watkins R 3rd, Williams L, Ahlbrand S, Garcia R, Karamanian A, et al. Stability provided by the sternum and rib cage in the thoracic spine. Spine (Phila Pa 1976). 2005;30(11):1283–6.

    Article  Google Scholar 

  26. Takeuchi T, Abumi K, Shono Y, Oda I, Kaneda K. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study. Spine (Phila Pa 1976). 1999;24(14):1414–20.

    Article  CAS  Google Scholar 

  27. Orndorff DGZT. Rothman-Simeone the spine. 6th ed. Philadelphia: Elsevier; 2011.

    Google Scholar 

  28. Schonauer C, Bocchetti A, Barbagallo G, Albanese V, Moraci A. Positioning on surgical table. Eur Spine J. 2004;13(Suppl 1):S50–5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Palmon SC, Kirsch JR, Depper JA, Toung TJ. The effect of the prone position on pulmonary mechanics is frame-dependent. Anesth Analg. 1998;87(5):1175–80.

    CAS  PubMed  Google Scholar 

  30. Brewin J, Hill M, Ellis H. The prevalence of cervical ribs in a London population. Clin Anat. 2009;22(3):331–6.

    Article  PubMed  Google Scholar 

  31. Merks JH, Smets AM, Van Rijn RR, Kobes J, Caron HN, Maas M, et al. Prevalence of rib anomalies in normal Caucasian children and childhood cancer patients. Eur J Med Genet. 2005;48(2):113–29.

    Article  PubMed  Google Scholar 

  32. Scheufler KM, Franke J, Eckardt A, Dohmen H. Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing, part I: cervicothoracic spine. Neurosurgery. 2011;69(4):782–95. discussion 95

    Article  PubMed  Google Scholar 

  33. Scheufler KM, Franke J, Eckardt A, Dohmen H. Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery. 2011;69(6):1307–16.

    Article  PubMed  Google Scholar 

  34. Dinesh SK, Tiruchelvarayan R, Ng I. A prospective study on the use of intraoperative computed tomography (iCT) for image-guided placement of thoracic pedicle screws. Br J Neurosurg. 2012;26(6):838–44.

    Article  PubMed  Google Scholar 

  35. Lee CY, Wu MH, Li YY, Cheng CC, Hsu CH, Huang TJ, et al. Intraoperative computed tomography navigation for transpedicular screw fixation to treat unstable thoracic and lumbar spine fractures: clinical analysis of a case series (CARE-compliant). Medicine (Baltimore). 2015;94(20):e757.

    Article  Google Scholar 

  36. Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine (Phila Pa 1976). 2004;29(3):333–42. discussion 42

    Article  Google Scholar 

  37. Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holden TJ, Bridwell KH, et al. Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine (Phila Pa 1976). 2002;27(18):2030–5.

    Article  Google Scholar 

  38. Hackenberg L, Link T, Liljenqvist U. Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density. Spine (Phila Pa 1976). 2002;27(9):937–42.

    Article  Google Scholar 

  39. Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976). 1994;19(21):2415–20.

    Article  CAS  Google Scholar 

  40. Soshi S, Shiba R, Kondo H, Murota K. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine (Phila Pa 1976). 1991;16(11):1335–41.

    Article  CAS  Google Scholar 

  41. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res. 1986;203:99–112.

    Google Scholar 

  42. Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg. 2002;96(3 Suppl):309–12.

    PubMed  Google Scholar 

  43. Frankel BM, D'Agostino S, Wang C. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine. 2007;7(1):47–53.

    Article  PubMed  Google Scholar 

  44. Dick JC, Zdeblick TA, Bartel BD, Kunz DN. Mechanical evaluation of cross-link designs in rigid pedicle screw systems. Spine (Phila Pa 1976). 1997;22(4):370–5.

    Article  CAS  Google Scholar 

  45. Dick JC, Jones MP, Zdeblick TA, Kunz DN, Horton WC. A biomechanical comparison evaluating the use of intermediate screws and cross-linkage in lumbar pedicle fixation. J Spinal Disord. 1994;7(5):402–7.

    Article  CAS  PubMed  Google Scholar 

  46. Johnston CE 2nd, Ashman RB, Baird AM, Allard RN. Effect of spinal construct stiffness on early fusion mass incorporation. Experimental study Spine (Phila Pa 1976). 1990;15(9):908–12.

    Article  Google Scholar 

  47. Lynn G, Mukherjee DP, Kruse RN, Sadasivan KK, Albright JA. Mechanical stability of thoracolumbar pedicle screw fixation. The effect of crosslinks. Spine (Phila Pa 1976). 1997;22(14):1568–72. discussion 73

    Article  CAS  Google Scholar 

  48. Schroeder JE, Girardi FP, Sandhu H, Weinstein J, Cammisa FP, Sama A. The use of local vancomycin powder in degenerative spine surgery. Eur Spine J. 2016;25(4):1029–33.

    Article  PubMed  Google Scholar 

  49. Bakhsheshian J, Dahdaleh NS, Lam SK, Savage JW, Smith ZA. The use of vancomycin powder in modern spine surgery: systematic review and meta-analysis of the clinical evidence. World Neurosurg. 2015;83(5):816–23.

    Article  PubMed  Google Scholar 

  50. Wang LC, Liou JT, Liu FC, Hsu JC, Lui PW. Fatal ischemia stroke in a patient with an asymptomatic carotid artery occlusion after lumbar spine surgery--a case report. Acta Anaesthesiol Taiwanica. 2004;42(3):179–82.

    Google Scholar 

  51. Chang SH, Miller NR. The incidence of vision loss due to perioperative ischemic optic neuropathy associated with spine surgery: the Johns Hopkins Hospital experience. Spine (Phila Pa 1976). 2005;30(11):1299–302.

    Article  Google Scholar 

  52. Dunker S, Hsu HY, Sebag J, Sadun AA. Perioperative risk factors for posterior ischemic optic neuropathy. J Am Coll Surg. 2002;194(6):705–10.

    Article  PubMed  Google Scholar 

  53. American Society of Anesthesiologists Task Force on Perioperative B. Practice advisory for perioperative visual loss associated with spine surgery: a report by the American Society of Anesthesiologists Task Force on perioperative blindness. Anesthesiology. 2006;104(6):1319–28.

    Article  Google Scholar 

  54. American Society of Anesthesiologists Task Force on Perioperative Visual L. Practice advisory for perioperative visual loss associated with spine surgery: an updated report by the American Society of Anesthesiologists Task Force on perioperative visual loss. Anesthesiology. 2012;116(2):274–85.

    Article  Google Scholar 

  55. Upadhyaya CD, Wu JC, Chin CT, Balamurali G, Mummaneni PV. Avoidance of wrong-level thoracic spine surgery: intraoperative localization with preoperative percutaneous fiducial screw placement. J Neurosurg Spine. 2012;16(3):280–4.

    Article  PubMed  Google Scholar 

  56. Weinstein MA, McCabe JP, Cammisa FP Jr. Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord. 2000;13(5):422–6.

    Article  CAS  PubMed  Google Scholar 

  57. Klein JD, Hey LA, Yu CS, Klein BB, Coufal FJ, Young EP, et al. Perioperative nutrition and postoperative complications in patients undergoing spinal surgery. Spine (Phila Pa 1976). 1996;21(22):2676–82.

    Article  CAS  Google Scholar 

  58. Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR. The effect of cigarette smoking and smoking cessation on spinal fusion. Spine (Phila Pa 1976). 2000;25(20):2608–15.

    Article  CAS  Google Scholar 

  59. El-Gindi S, Aref S, Salama M, Andrew J. Infection of intervertebral discs after operation. J Bone Joint Surg Br. 1976;58(1):114–6.

    CAS  PubMed  Google Scholar 

  60. Rechtine GR, Bono PL, Cahill D, Bolesta MJ, Chrin AM. Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J Orthop Trauma. 2001;15(8):566–9.

    Article  CAS  PubMed  Google Scholar 

  61. Fernandez-Sousa JM, Gavilanes JG, Municio AM, Paredes JA, Perez-Aranda A, Rodriguez R. Primary structure of cytochrome c from the insect Ceratitis capitata. Biochim Biophys Acta. 1975;393(2):358–67.

    Article  CAS  PubMed  Google Scholar 

  62. Savitz MH, Malis LI, Savitz SI. Efficacy of prophylactic antibiotic therapy in spinal surgery: a meta-analysis. Neurosurgery. 2003;53(1):243–4. author reply 4-5

    Article  PubMed  Google Scholar 

  63. Swoboda SM, Merz C, Kostuik J, Trentler B, Lipsett PA. Does intraoperative blood loss affect antibiotic serum and tissue concentrations? Arch Surg. 1996;131(11):1165–71. discussion 71-2

    Article  CAS  PubMed  Google Scholar 

  64. Polly DW Jr, Meter JJ, Brueckner R, Asplund L, van Dam BE. The effect of intraoperative blood loss on serum cefazolin level in patients undergoing instrumented spinal fusion. A prospective, controlled study. Spine (Phila Pa 1976). 1996;21(20):2363–7.

    Article  Google Scholar 

  65. Rosenstein BD, Wilson FC, Funderburk CH. The use of bacitracin irrigation to prevent infection in postoperative skeletal wounds. An experimental study. J Bone Joint Surg Am. 1989;71(3):427–30.

    Article  CAS  PubMed  Google Scholar 

  66. Caroom C, Tullar JM, Benton EG Jr, Jones JR, Chaput CD. Intrawound vancomycin powder reduces surgical site infections in posterior cervical fusion. Spine (Phila Pa 1976). 2013;38(14):1183–7.

    Article  Google Scholar 

  67. Heller A, McIff TE, Lai SM, Burton DC. Intrawound Vancomycin powder decreases staphylococcal surgical site infections after posterior instrumented spinal arthrodesis. J Spinal Disord Tech. 2015;28(10):E584–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Martin JR, Adogwa O, Brown CR, Bagley CA, Richardson WJ, Lad SP, et al. Experience with intrawound vancomycin powder for spinal deformity surgery. Spine (Phila Pa 1976). 2014;39(2):177–84.

    Article  Google Scholar 

  69. O'Neill KR, Smith JG, Abtahi AM, Archer KR, Spengler DM, McGirt MJ, et al. Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. Spine J. 2011;11(7):641–6.

    Article  PubMed  Google Scholar 

  70. Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK. Lumbar laminectomy and fusion with routine local application of vancomycin powder: decreased infection rate in instrumented and non-instrumented cases. Clin Neurol Neurosurg. 2013;115(9):1766–9.

    Article  PubMed  Google Scholar 

  71. Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK. Decreased risk of wound infection after posterior cervical fusion with routine local application of vancomycin powder. Spine (Phila Pa 1976). 2013;38(12):991–4.

    Article  Google Scholar 

  72. Evaniew N, Khan M, Drew B, Peterson D, Bhandari M, Ghert M. Intrawound vancomycin to prevent infections after spine surgery: a systematic review and meta-analysis. Eur Spine J. 2015;24(3):533–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad A. Khairi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mendenhall, S.K., Khairi, S.A. (2017). Posterior Thoracic Spinal Fixation. In: Holly, L., Anderson, P. (eds) Essentials of Spinal Stabilization . Springer, Cham. https://doi.org/10.1007/978-3-319-59713-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59713-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59712-6

  • Online ISBN: 978-3-319-59713-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics