Skip to main content

Antimicrobial Resistance in Intra-abdominal Infections

  • Chapter
  • First Online:
  • 1547 Accesses

Part of the book series: Hot Topics in Acute Care Surgery and Trauma ((HTACST))

Abstract

Antimicrobial resistance is a worldwide expanding phenomenon with unprecedented consequences in morbidity, mortality, and healthcare expenditures. Surgical departments follow the global alarming trends, with less than a handful antibiotics active against many contemporary bacteria with pan-drug-resistant phenotypes.

Understanding the underlying mechanisms of resistance development and the overall toll from antibiotic misuse is essential in order to effectively use antibiotics in intra-abdominal infections while limiting hazardous overprescribing behaviors. Enhancing surgeons’ knowledge on antibiotics and resistance mechanisms will maximize patients’ clinical outcomes, while potentiating the acceptance of antibiotic stewardship programs and other measures targeting the containment of the problem. This chapter will briefly review major antibiotic resistance mechanisms encountered in the most common pathogens from intra-abdominal infections, discuss risk factors for emergence of antimicrobial resistance in surgical patients and highlight the most important measures by which surgeons can confront this challenging therapeutic issue.

This is a preview of subscription content, log in via an institution.

References

  1. Dellit TH, Owens RC, McGowan JE Jr, et al. Infectious Diseases Society of America. Society for Healthcare Epidemiology of America Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44:159–77.

    Article  PubMed  Google Scholar 

  2. Sartelli M, Viale P, Catena F, et al. WSES guidelines for management of intra-abdominal infections. World J Emerg Surg. 2013;8(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sartelli M, Weber DG, Ruppé E, et al. Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA). World J Emerg Surg. 2016;11:33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079–81.

    Article  PubMed  Google Scholar 

  5. Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1–12.

    Article  PubMed  Google Scholar 

  6. Carlet J. members of the WAAAR. World alliance against antibiotic resistance: the WAAAR declaration against antibiotic resistance. Med Intensiva. 2015;39(1):34–9.

    Google Scholar 

  7. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128(6):1037–50.

    Article  CAS  PubMed  Google Scholar 

  8. Angeletti S, Ceccarelli G, Vita S, et al. Unusual microorganisms and antimicrobial resistances in a group of Syrian migrants: Sentinel surveillance data from an asylum seekers centre in Italy. Travel Med Infect Dis. 2016;14(2):115–22.

    Article  PubMed  Google Scholar 

  9. Peretz A, Labay K, Zonis Z, et al. Disengagement does not apply to bacteria: a high carriage rate of antibiotic-resistant pathogens among Syrian civilians treated in Israeli hospitals. Clin Infect Dis. 2014;59:753–4.

    Article  PubMed  Google Scholar 

  10. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan and the UK: a molecular, biological and epidemiological study. Lancet Infect Dis. 2010;10:597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poulakou G, Plachouras D. Planet's population on the move, infections on the rise. Intensive Care Med. 2016 Dec;42(12):2055–8.

    Article  PubMed  Google Scholar 

  12. Payne M, Croxen MA, Lee TD, et al. mcr-1 positive, colistin resistant Escherichia coli in traveler returning to Canada from China. Emerg Infect Dis. 2016;22(9):1673–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Philippon A, Slama P, Deny P, et al. A structure based classification of class A β-lactamases, a broadly diverse family of enzymes. Clin Microbiol Rev. 2016;29(1):29–57.

    Article  PubMed  Google Scholar 

  14. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harris PN, Ferguson JK. Antibiotic therapy for inducible AmpC beta-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? Int J Antimicrob Agents. 2012;40(4):297–305.

    Article  CAS  PubMed  Google Scholar 

  16. Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care. 2015;5:61.

    Article  PubMed  Google Scholar 

  17. Nguyen HM, Shier KL, Graber CJ. Determining a clinical framework for use of cefepime and β-lactam/β-lactamase inhibitors in the treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2014;69(4):871–80.

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez-Bano J, Navarro MD, Retamar P, et al. The extended spectrum beta-lactamases-red Espanola de investigacion en patologia infecciosa/grupo de estudio de infeccion hospitalaria group. Beta-lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum–lactamase producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis. 2012;54(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  19. European Committee on Antimicrobial Susceptibility Testing—Commitι de l’antibiogramme de la Sociιtι Franηaise de Microbiologie. Guidelines, 2015. Iowa City, IA: European Committee on Antimicrobial Susceptibility Testing; 2015. http://www.eucast.org. Accessed 3 Mar 2015

    Google Scholar 

  20. Ofer-Friedman H, Shefler C, Sharma S, et al. Carbapenems versus piperacillin-tazobactam for bloodstream infections of non-urinary source caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol. 2015;36(8):981–5.

    Article  PubMed  Google Scholar 

  21. Woerther PL, Burdet C, Chachaty E, et al. Trends in human fecal carriage of extended-spectrum beta-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev. 2013;26:744–58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.

    Article  CAS  PubMed  Google Scholar 

  23. Grundmann H, Glasner C, Albiger B, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (Euscape): a prospective multinational study. Lancet Infect Dis. 2017;17(2):153–63.

    Article  CAS  PubMed  Google Scholar 

  24. Albiger B, Glasner C, Struelens MJ, et al. European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill. 2015;20(45):PMID: 26675038.

    Article  Google Scholar 

  25. Conte V, Monaco M, Giani T, et al. AR-ISS Study Group on Carbapenemase-producing K. pneumoniae. Molecular epidemiology of KPC-producing Klebsiella pneumoniae from invasive infections in Italy: increasing diversity with predominance of the ST512 clade II sublineage. J Antimicrob Chemother. 2016;71(12):3386–39.

    Article  CAS  PubMed  Google Scholar 

  26. Antoniadou A, Kontopidou F, Poulakou G, et al. Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multiclonal cluster. J Antimicrob Chemother. 2007;59(4):786–90.

    Article  CAS  PubMed  Google Scholar 

  27. Nordmann P, Poirel L. Plasmid-mediated colistin resistance: an additional antibiotic resistance menace. Clin Microbiol Infect. 2016;22:398–400.

    Article  CAS  PubMed  Google Scholar 

  28. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  PubMed  Google Scholar 

  29. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases a last frontier for beta-lactams? Lancet Inf Dis. 2011;11:381–93.

    Article  CAS  Google Scholar 

  30. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005;41(Suppl 2):S120–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13:151–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El Zowalaty ME, Al Thani AA, Webster TJ, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10):1683–706.

    Article  PubMed  Google Scholar 

  33. Potron A, Poirel L, Nordmann P, et al. Emerging broad spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568–85.

    Article  CAS  PubMed  Google Scholar 

  34. Durante-Mangoni E, Signoriello G, Andini R, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis. 2013;57(3):349–58.

    Article  CAS  PubMed  Google Scholar 

  35. Petrosillo N, Giannella M, Antonelli M, et al. Clinical experience of colistin-glycopeptide combination in critically-ill patients infected with gram-negative bacteria. Antimicrob Agents Chemother. 2014;58(2):851–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garnacho-Montero J, Dimopoulos G, Poulakou G, et al. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med. 2015;41(12):2057–75.

    Article  CAS  PubMed  Google Scholar 

  37. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in Enterococci. Expert Rev Anti-Infect Ther. 2014;12(10):1221–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vedantam G. Antimicrobial resistance in Bacteroides spp: occurrence and dissemination. Future Microbiol. 2009;4(4):413–23.

    Article  CAS  PubMed  Google Scholar 

  39. Morrissey I, Hackel M, Badal R, et al. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel). 2013;6:1335–46.

    Article  Google Scholar 

  40. Hawser SP, Bouchillon SK, Hoban DJ, et al. Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum beta-lactamases in community- and hospital-associated intra-abdominal infections in Europe: results of the 2008 study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother. 2010;54:3043–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jean SS, Hsueh PR. Distribution of ESBLs, AmpC β-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–2014: results from the study for monitoring antimicrobial resistance trends (SMART). J Antimicrob Chemother. 2016;4:166–71.

    Google Scholar 

  42. Hackel MA, Badal RE, Bouchillon SK, et al. Resistance rates of intra-abdominal isolates from intensive care units and non intensive care units in the United States: the study for monitoring antimicrobial resistance trends 2010–2012. Surg Infect. 2015;16(3):298–304.

    Article  Google Scholar 

  43. Sartelli M, Catena F, Ansaloni L, et al. Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW Study. World J Emerg Surg. 2014;9:37.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hawser SP, Bouchillon SK, Lascols C, et al. Susceptibility of Klebsiella pneumoniae isolates from intra-abdominal infections and molecular characterization of ertapenem-resistant isolates. Antimicrob Agents Chemother. 2011;55:3917–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lascols C, Hackel M, Marshall SH, et al. Increasing prevalence and dissemination of NDM-1 metallo-β-lactamase in India: data from the SMART study (2009). J Antimicrob Chemother. 2011;66:1992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheng WH, Badal RE, Hsueh PR, Program SMART. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: Results of the study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother. 2013;57:2981–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Babinchak T, Badal R, Hoban D, et al. Trends in susceptibility of selected gram-negative bacilli isolated from intra-abdominal infections in North America: SMART 2005–2010. Diagn Microbiol Infect Dis. 2013;76:379–81.

    Article  CAS  PubMed  Google Scholar 

  48. Sitges-Serra A, Lopez MJ, Girvent M, et al. Postoperative enterococcal infection after treatment of complicated intra-abdominal sepsis. Br J Surg. 2002;89:361–7.

    Article  CAS  PubMed  Google Scholar 

  49. Dupont H, Friggeri A, Touzeau J, et al. Enterococci increase the morbidity and mortality associated with severe intra-abdominal infections in elderly patients hospitalized in the intensive care unit. J Antimicrob Chemother. 2011;66(10):2379–85.

    Article  CAS  PubMed  Google Scholar 

  50. Montravers P, Lepape A, Dubreuil L, et al. Clinical and microbiological profiles of community-acquired and nosocomial intra-abdominal infections: results of the French prospective, observational EBIIA study. J Antimicrob Chemother. 2009;63:785–94.

    Article  CAS  PubMed  Google Scholar 

  51. Brook I, Wexler HM, Goldstein EJ. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev. 2013;26:526–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Snydman DR, Jacobus NV, McDermott LA, et al. Lessons learned from the anaerobe survey: historical perspective and review of the most recent data (2005–2007). Clin Infect Dis. 2010;50(Suppl 1):S26–33.

    Article  PubMed  Google Scholar 

  53. Liu CY, Huang YT, Liao CH, et al. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrob Agents Chemother. 2008;52(9):3161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Menichetti F, Sganga G. Definition and classification of intra-abdominal infections. J Chemother. 2009;21(Suppl 1):3–4.

    Article  PubMed  Google Scholar 

  55. Sartelli MA. focus on intra-abdominal infections. World J Emerg Surg. 2010;19(5):9.

    Article  Google Scholar 

  56. Weigelt JA. Empiric treatment options in the management of complicated intra-abdominal infections. Cleve Clin J Med. 2007;74(Suppl 4):s29–37.

    Article  PubMed  Google Scholar 

  57. Bader F, Schroeder M, Kujath P, et al. Diffuse post-operative peritonitis: value of diagnostic parameters and impact of early indication for relaparotomy. Eur J Med Res. 2009;14:1–6.

    Article  Google Scholar 

  58. Dupont H. The empiric treatment of nosocomial intraabdominal infections. Int J Infect Dis. 2007;11(s1):s1–6.

    Article  PubMed  Google Scholar 

  59. Herzog T, Chromik AM, Uhl W. Treatment of complicated intra-abdominal infections in the era of multi-drug resistant bacteria. Eur J Med Res. 2010;30:525–32.

    Article  Google Scholar 

  60. Barie PS, Hydo LJ, Eachempati SR. Longitudinal outcomes of intra-abdominal infection complicated by critical illness. Surg Infect. 2004;5:365–73.

    Article  Google Scholar 

  61. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  PubMed  Google Scholar 

  62. Eckmann C, Dryden M, Montravers P, et al. Antimicrobial treatment of “complicated” intra-abdominal infections and the new IDSA guidelines ? A commentary and an alternative European approach according to clinical definitions. Eur J Med Res. 2011;16(3):115–26.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sartelli M, Catena F, Ansaloni L, et al. Complicated intraabdominal infections in Europe: a comprehensive review of the CIAO study. World J Emerg Surg. 2012;29(7):36.

    Article  Google Scholar 

  64. Oteo J, Perez-Vazquez M, Campos J. Extended-spectrum b-lactamase producing Escherichia coli: changing epidemiology and clinical impact. Curr Opin Infect Dis. 2010;23:320–6.

    Article  CAS  PubMed  Google Scholar 

  65. Seguin P, Fedun Y, Laviolle B, et al. Risk factors for multidrug-resistant bacteria in patients with postoperative peritonitis requiring intensive care. J Antimicrob Chemother. 2010;65:342–6.

    Article  CAS  PubMed  Google Scholar 

  66. Seguin P, Laviolle B, Chanavaz C, et al. Factors associated with multidrug-resistant bacteria in secondary peritonitis: impact on antibiotic therapy. Clin Microbiol Infect. 2006;12:980–5.

    Article  CAS  PubMed  Google Scholar 

  67. Friedman ND, Kaye KS, Stout JE, et al. Health care associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137:791–7.

    Article  PubMed  Google Scholar 

  68. Montravers P, Dupont H, Leone M, et al. Guidelines for management of intra-abdominal infections. Anaesth Crit Care Pain Med. 2015;34:117–30.

    Article  PubMed  Google Scholar 

  69. Montravers P, Blot S, Dimopoulos G, et al. Therapeutic management of peritonitis: a comprehensive guide for intensivists. Intensive Care Med. 2016;42(8):1234–47.

    Article  CAS  PubMed  Google Scholar 

  70. Swenson BR, Metzger R, Hedrick TL, et al. Choosing antibiotics for intra-abdominal infections: what do we mean by “high risk”? Surg Infect. 2009;10:29–39.

    Article  Google Scholar 

  71. Kollef MH, Sherman G, Ward S, et al. Inadequate Antimicrobial Workshop Group. Treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115:462–74.

    Article  CAS  PubMed  Google Scholar 

  72. Harbarth S, Uckay I. Are there any patients with peritonitis who require empiric therapy for enterococcus? Eur J Microbiol Infect Dis. 2004;23:73–7.

    Article  CAS  Google Scholar 

  73. Roehrborn A, Thomas l P o, et al. The microbiology of postoperative peritonitis. Clin Infect Dis. 2001;33:1513–9.

    Article  CAS  PubMed  Google Scholar 

  74. Rl N, Ac M. Enterococcal infections in surgical patients: the mystery continues. Clin Infect Dis. 1992;15:72–6.

    Article  Google Scholar 

  75. De Waele JJ, Hoste EA, Blot SI. Bloodstream infections of abdominal origin in the intensive care unit: characteristics and determinants of death. Surg Infect. 2008;9:171–7.

    Article  Google Scholar 

  76. Halle E, Padberg J. Rosseau s et al. Linezolid-resistant Enterococcus faecium and Enterococcus faecalis isolated from a septic patient: report of first isolates in Germany. Infection. 2004;32:182–3.

    Article  CAS  PubMed  Google Scholar 

  77. Chow AW, Evans GA, Nathens AB, et al. Canadian practice guidelines for surgical intra-abdominal infections. Can J Infect Dis Med Microbiol. 2010;21:11–37.

    PubMed  PubMed Central  Google Scholar 

  78. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis. 2010;50:133–64.

    Article  PubMed  Google Scholar 

  79. Davey P, Brown E, Charani E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2013;4:CD003543.

    Google Scholar 

  80. Ramsay C, Brown E, Hartman G, et al. Room for improvement: a systematic review of the quality of evaluations of interventions to improve hospital antibiotic prescribing. J Antimicrob Chemother. 2003;52:764–71.

    Article  CAS  PubMed  Google Scholar 

  81. Dortch MJ, Fleming SB, Kauffmann RM, et al. Infection reduction strategies including antibiotic stewardship protocols in surgical and trauma intensive care units are associated with reduced resistant gram-negative healthcare-associated infections. Surg Infect. 2011;12(1):15–25.

    Article  Google Scholar 

  82. White AC Jr, Atmar RL, Wilson J, et al. Effects of requiring prior authorization for selected antimicrobials: expenditures, susceptibilities, and clinical outcomes. Clin Infect Dis. 1997;25:230–9.

    Article  PubMed  Google Scholar 

  83. Sartelli M, Duane TM, Catena F, et al. Antimicrobial stewardship: a call to action for surgeons. Surg Infect. 2016;17(6):625–31.

    Article  Google Scholar 

  84. Cakmakci M. Antibiotic stewardship programmes and the surgeon’s role. J Hosp Infect. 2015;89:264–6.

    Article  CAS  PubMed  Google Scholar 

  85. Duane TM, Zuo JX, Wolfe LG, et al. Surgeons do not listen: evaluation of compliance with antimicrobial stewardship program recommendations. Am Surg. 2013;79:1269–72.

    PubMed  Google Scholar 

  86. Gladman MA, Knowles CH, Gladman LJ, et al. Intra-operative culture in appendicitis: traditional practice challenged. Ann R Coll Surg Engl. 2004;86:196–201.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Davies HO, Alkhamesi NA, Dawson PM. Peritoneal fluid culture in appendicitis: review in changing times. Int J Surg. 2010;8:426–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garyphallia Poulakou M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Poulakou, G., Siakallis, G., Tsiodras, S. (2018). Antimicrobial Resistance in Intra-abdominal Infections. In: Sartelli, M., Bassetti, M., Martin-Loeches, I. (eds) Abdominal Sepsis. Hot Topics in Acute Care Surgery and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-319-59704-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59704-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59703-4

  • Online ISBN: 978-3-319-59704-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics