Variational Principles in Geophysical Fluid Dynamics and Approximated Equations

Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


In this chapter, the variational principle of Hamilton is applied to different examples from Geophysical Fluid Dynamics. Hamilton’s principle is extended to uniformly rotating flows and to incompressible flows. After an example in finite dimensions consisting of the motion of point vortices, a set of approximated equations is considered, that is, rotating shallow water equations, rotating Green–Naghdi equations and semi-geostrophic equations. Equations of the first and second kind conserve potential vorticity as a consequence of the invariance of the related action functional under relabelling symmetry. Equation of the third kind takes into account also an ageostrophic part of the flow and conserves the so-called transformed potential vorticity which is based on a special Legendre transformation on the coordinates. The case of continuously stratified fluids is then analysed. Finally, the variational approach is applied to wave dynamics, where it can be used to both derive the equations of motion and to obtain the dispersion relation for nonlinear problems as well as the conservation of the wave activity of the system.


Fluid dynamics Geophysical fluid dynamics Ideal fluid Variational principle Conservation laws Rotating flows Stratified flows Potential vorticity Ertel’s theorem Circulation Shallow water equations Quasi-geostrophic equations Lagrangian labels Relabelling symmetry Point vortices Approximated equations Semi-geostrophy Green–Naghdi equations Wave dynamics Surface waves Luke’s variational principle Whitham’s averaged variational principle Wave Activity Klein–Gordon equation Korteweg–deVries (KdV) equation 


  1. 1.
    Andrews, D.: On the existence of nonzonal flows satisfying sufficient conditions for stability. Geophys. Astro. Fluid 28, 243–256 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    Arnold, V.: Conditions for non-linear stability of stationary plane curvilinear flows of an ideal fluid. Dokl. Akad. Nauk. SSSR 162, 975–978: English Translation: Sov. Math. 1965(6), 773–777 (1965)Google Scholar
  3. 3.
    Arnold, V.: On an a priori estimate in the theory of hydrodynamical stability. Izv. Vyssh. Uchebn. Zadev. Mat. 54, 3–5 (1966); English Translation: Amer. Math. Soc. Transl. Ser. 2, 1966, 79, 267–269Google Scholar
  4. 4.
    Badin, G.: Surface semi-geostrophic dynamics in the ocean. Geophys. Astro. Fluid 107(5), 526–540 (2013)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Beron-Vera, F.: Constrained-Hamiltonian shallow-water dynamics on the sphere. In: Nonlinear Processes in Geophysical Fluid Dynamics, pp. 29–51. Springer, Berlin (2003)Google Scholar
  6. 6.
    Blender, R., Badin, G.: Hydrodynamic Nambu mechanics derived by geometric constraints. J. Phys. A: Math. Theor. 48, 105, 501 (2015)Google Scholar
  7. 7.
    Blender, R., Badin, G.: Construction of hamiltonian and nambu forms for the shallow water equations. Fluids 2(2), 24 (2017)CrossRefGoogle Scholar
  8. 8.
    Blender, R., Badin, G.: Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation. Europ. Phys. J. Plus 132(3), 137 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Blumen, W.: On the stability of quasi-geostrophic flow. J. Atmos. Sci. 25, 929–931 (1968)Google Scholar
  10. 10.
    Bokhove, O.: Eulerian variational principles for stratified hydrostatic equations. J. Atmos. Sci. 59(9), 1619–1628 (2002)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bokhove, O., Vanneste, J., Warn, J.: A variational formulation for barotropic quasi-geostrophic flows. Geophys. Astro. Fluid 88, 67–79 (1998)Google Scholar
  12. 12.
    Chapman, D.M.: Ideal vortex motion in two dimensions: symmetries and conservation laws. J. Math. Phys. 19(9), 1988–1992 (1978)Google Scholar
  13. 13.
    Charney, J.: Numerical experiments in atmospheric hydrodynamics. In: Experimental Arithmetic. High Speed Computing and Mathematics, Proceedings of Symposia in Applied Mathematics, pp. 289–310. Am. Math. Soc, Providence (1963)Google Scholar
  14. 14.
    Cotter, C., Holm, D.: Variational formulations of sound-proof models. Q. J. R. Meteor. Soc. 140(683), 1966–1973 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Craig, G.: A three-dimensional generalization of Eliassen’s balanced vortex equations derived from Hamilton’s principle. Q. J. R. Meteor. Soc. 117(499), 435–448 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    Crisciani, F., Badin, G.: A note on the full non-linear stability of inviscid, planar flows with constant relative vorticity. Nuovo Cimento C 30, 337 (2007)Google Scholar
  17. 17.
    Cullen, M.: A Mathematical Theory of Large-scale Atmosphere/Ocean Flow. World Scientific, Singapore (2006)Google Scholar
  18. 18.
    Dellar, P.: Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674, 174–195 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dellar, P., Salmon, R.: Shallow water equations with a complete Coriolis force and topography. Phys. Fluids 17, 106, 601 (2005)Google Scholar
  20. 20.
    Eliassen, A.: The quasi-static equations of motion. Geofys. Publ. 17, 5–44 (1948)Google Scholar
  21. 21.
    Fjortoft, R.: On the integration of a system of geostrophically balanced prognostic equations. In: Proceedings of the International Symposium Numerical Weather Prediction, pp. 153–159. Meteor. Soc., Japan (1962)Google Scholar
  22. 22.
    Green, A., Naghdi, P.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246 (1976)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Griffa, A.: Canonical transformations and variational principles for fluid dynamics. Physica A 127, 265–281 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Holm, D.: Hamiltonian balance equations. Physica D 98(2), 379–414 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Holm, D., Marsden, J., Ratiu, T., Weinstein, A.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1–116 (1985)Google Scholar
  26. 26.
    Holm, D., Zeitlin, V.: Hamilton’s principle for quasigeostrophic motion. Phys. Fluids 10(4), 800–806 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hoskins, B.: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32(2), 233–242 (1975)ADSCrossRefGoogle Scholar
  28. 28.
    Hoskins, B., Bretherton, F.: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci. 29(1), 11–37 (1972)ADSCrossRefGoogle Scholar
  29. 29.
    Kushner, P., Shepherd, T.: Wave-activity conservation laws and stability theorems for semi- geostrophic dynamics. Part 1. Pseudomomentum-based theory. J. Fluid Mech. 290, 67–104 (1995)Google Scholar
  30. 30.
    Kushner, P., Shepherd, T.: Wave-activity conservation laws and stability theorems for semi- geostrophic dynamics. Part 2. Pseudoenergy-based theory. J. Fluid Mech. 290, 105–129 (1995)Google Scholar
  31. 31.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)Google Scholar
  32. 32.
    Luke, J.: A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395–397 (1967)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    McIntyre, M., Shepherd, T.: An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnol’d’s stability theorems. J. Fluid Mech. 181, 527–565 (1987)Google Scholar
  34. 34.
    Miles, J., Salmon, R.: Weakly dispersive nonlinear gravity waves. J. Fluid Mech. 157, 519–531 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Morrison, P.: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70(2), 467 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Morrison, P.: Hamiltonian fluid dynamics. Encycl. Math. Phys. 2 (2006)Google Scholar
  37. 37.
    Morrison, P.J.: Thoughts on brackets and dissipation: old and new. J. Phys. Conf. Ser. 169, 012, 006 (2009)Google Scholar
  38. 38.
    Mu, M., Qingcun, Z., Shepherd, T., Yongming, L.: Nonlinear stability of multilayer quasi-geostrophic flow. J. Fluid Mech. 264, 165–184 (1994)Google Scholar
  39. 39.
    Müller, P.: Ertel’s potential vorticity theorem in physical oceanography. Rev. Geophys. 33, 67–97 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    Nambu, Y.: Generalized hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Névir, P., Blender, R.: A Nambu representation of incompressible hydrodynamics using helicity and enstrophy. J. Phys. A Math. Gen. 26, 1189–1193 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Oliver, M.: Variational asymptotics for rotating shallow water near geostrophy: a transformational approach. J. Fluid Mech. 551, 197–234 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Oliver, M.: A variational derivation of the geostrophic momentum approximation. J. Fluid Mech. 751, R2 (2014)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Oliver, M., Vasylkevych, S.: Generalized LSG models with spatially varying Coriolis parameter. Geophys. Astro. Fluid 107, 259–276 (2013)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Oliver, M., Vasylkevych, S.: Generalized large-scale semigeostrophic approximations for the f-plane primitive equations. J. Phys. A: Math. Theor. 49, 184,001 (2016)Google Scholar
  46. 46.
    Ragone, F., Badin, G.: A study of surface semi-geostrophic turbulence: freely decaying dynamics. J. Fluid Mech. 792, 740–774 (2016)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Ripa, P.: Symmetries and conservation laws for internal gravity waves. In: Nonlinear Properties of Internal Waves, vol. 76, pp. 281–306. AIP Publishing, New York (1981)Google Scholar
  48. 48.
    Ripa, P.: General stability conditions for zonal flows in a one-layer model on the \(\beta \)-plane or the sphere. J. Fluid Mech. 126, 463–489 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Ripa, P.: General stability conditions for a multi-layer model. J. Fluid Mech. 222, 119–137 (1991)Google Scholar
  50. 50.
    Roulstone, I., Brice, S.: On the Hamiltonian formulation of the quasi-hydrostatic equations. Q. J. R. Meteor. Soc. 121(524), 927–936 (1995)ADSCrossRefGoogle Scholar
  51. 51.
    Roulstone, I., Sewell, M.: Potential vorticities in semi-geostrophic theory. Q. J. R. Meteor. Soc. 122(532), 983–992 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    Salmon, R.: The shape of the main thermocline. J. Phys. Oceanogr. 12, 1458–1479 (1982)ADSCrossRefGoogle Scholar
  53. 53.
    Salmon, R.: Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431–44 (1983)ADSCrossRefzbMATHGoogle Scholar
  54. 54.
    Salmon, R.: New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461–477 (1985)ADSCrossRefzbMATHGoogle Scholar
  55. 55.
    Salmon, R.: Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225–256 (1988)ADSCrossRefGoogle Scholar
  56. 56.
    Salmon, R.: Hamilton’s principle and the vorticity laws for a relativistic perfect fluid. Geophys. Astro. Fluid 43(2), 167–179 (1988)ADSCrossRefzbMATHGoogle Scholar
  57. 57.
    Salmon, R.: Semigeostrophic theory as a dirac-bracket projection. J. Fluid Mech. 196, 345–358 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Salmon, R.: Large-scale semigeostrophic equations for use in ocean circulation models. J. Fluid Mech. 318, 85–105 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Salmon, R.: Lecture Notes on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)Google Scholar
  60. 60.
    Shepherd, T.: Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys. 32, 287–338 (1990)ADSCrossRefGoogle Scholar
  61. 61.
    Shepherd, T.: Hamiltonian geophysical fluid dynamics. In: Encyclopedia of Atmospheric Sciences, pp. 929–938. Academic Press, Cambridge (2003)Google Scholar
  62. 62.
    Shepherd, T.: Ripa’s theorem and its relatives. In: Nonlinear Processes in Geophysical Fluid Dynamics, pp. 1–14. Springer, Berlin (2003)Google Scholar
  63. 63.
    Shutts, G.: Planetary semi-geostrophic equations derived from Hamilton’s principle. J. Fluid Mech. 208, 545–573 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Staniforth, A.: Exact stationary axisymmetric solutions of the Euler equations on \(\beta \)-\(\gamma \) planes. Atmos. Sci. Lett. 13(2), 79–87 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    Staniforth, A.: Deriving consistent approximate models of the global atmosphere using Hamilton’s principle. Q. J. R. Meteor. Soc. 140(684), 2383–2387 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    Stewart, A., Dellar, P.: Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane. J. Fluid Mech. 651, 387 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Sultana, S., Rahman, Z.: Hamiltonian formulation for water wave equation. Open J. Fluid Dyn. 3(02), 75 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    Swaters, G.: A nonlinear stability theorem for baroclinic quasigeostrophic flow. Phys. Fluids 29, 5 (1986)Google Scholar
  69. 69.
    Swaters, G.: Introduction to Hamiltonian Fluid Dynamics and Stability Theory. Chapman & Hall/CRC, Boca Raton (2000)Google Scholar
  70. 70.
    Tort, M., Dubos, T.: Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q. J. R. Meteor. Soc. 140(684), 2388–2392 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    Tort, M., Dubos, T.: Usual approximations to the equations of atmospheric motion: a variational perspective. J. Atmos. Sci. 71(7), 2452–2466 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    Tort, M., Dubos, T., Bouchut, F., Zeitlin, V.: Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. 748, 789–821 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Virasoro, M.: Variational principle for two-dimensional incompressible hydrodynamics and quasigeostrophic flows. Phys. Rev. Lett. 47(17), 1181 (1981)ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    Warneford, E.S., Dellar, P.J.: The quasi-geostrophic theory of the thermal shallow water equations. J. Fluid Mech. 723, 374–403 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    White, A., Hoskins, B., Roulstone, I., Staniforth, A.: Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteor. Soc. 131(609), 2081–2107 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    Whitham, G.: A general approach to linear and non-linear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273–283 (1965)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    Whitham, G.: Variational methods and applications to water waves. Proc. R. Soc. Lond. A Math. 299, 6–25 (1967)ADSCrossRefzbMATHGoogle Scholar
  78. 78.
    Whitham, G.: Linear and Nonlinear Waves. Wiley-Interscience, London (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universität HamburgHamburgGermany
  2. 2.University of TriesteTriesteItaly

Personalised recommendations