Skip to main content

Variational Principles in Fluid Dynamics, Symmetries and Conservation Laws

  • Chapter
  • First Online:
Variational Formulation of Fluid and Geophysical Fluid Dynamics

Abstract

In this chapter, the Lagrangian density associated with fluid dynamics will be introduced. The equations of motion will be rederived from the Lagrangian density using Hamilton’s principle. In particular, Hamilton’s principle will be applied mainly in the Lagrangian framework, where the analogy to a system of point particles will simplify the calculations. The same principle will, however, be applied also in the Eulerian framework, and the relationship between the two frameworks will be revealed from the use of canonical transformations. Noether’s Theorem will be applied to derive the conservation laws corresponding to the continuous symmetries of the Lagrangian density for the ideal fluid. Particular attention will be given to the particle relabelling symmetry and the associated conservation of vorticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, V.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. I. Fourier 16, 319–361 (1966)

    Article  MATH  Google Scholar 

  2. Bateman, H.: Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems. Proc. R. Soc. Lond. A 125, 598–618 (1929)

    Article  ADS  MATH  Google Scholar 

  3. Benjamin, T.: Impulse, flow force and variational principles. IMA J. Appl. Math. 32, 3–68 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bretherton, F.: A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44, 19–31 (1970)

    Article  ADS  MATH  Google Scholar 

  5. Broer, L., Kobussen, J.: Canonical transformations and generating functionals. Physica 61(2), 275–288 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  6. Broer, L., Kobussen, J.: Conversion from material to local coordinates as a canonical transformation. Appl. Sci. Res. 29(1), 419–429 (1974)

    Article  ADS  MATH  Google Scholar 

  7. Eckart, C.: Variation principles of hydrodynamics. Phys. Fluids 3, 421–427 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Eckart, C.: Some transformations of the hydrodynamic equations. Phys. Fluids 6, 1037–1041 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fonda, L., Ghirardi, G.: Symmetry Principles in Quantum Physics. Marcel Dekker Inc, New York (1970)

    Google Scholar 

  10. Fukagawa, H., Fujitani, Y.: Clebsch potentials in the variational principle for a perfect fluid. Progr. Theor. Phys. 124(3), 517–531 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Goncharov, V., Pavlov, V.: Some remarks on the physical foundation of the Hamiltonian description of fluids motions. Eur. J. Mech. B Fluid. 16, 509–556 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Goncharov, V., Pavlov, V.: On the Hamiltonian approach: Applications to geophysical flows. Nonlinear Proc. Geoph. 5(4), 219–240 (1998)

    Article  ADS  Google Scholar 

  13. Griffa, A.: Canonical transformations and variational principles for fluid dynamics. Physica A 127, 265–281 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Herivel, J.: The derivation of the equations of motion of an ideal fluid by Hamilton’s principle. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 344–349. Cambridge University Press, Cambridge (1955)

    Google Scholar 

  15. Holm, D., Schmah, T., Stoica, C.: Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  16. Ibragimov, N., Kolsrud, T.: Lagrangian approach to evolution equations: symmetries and conservation laws. Nonlinear dynam. 36(1), 29–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, C.: Liquidhelium. In: Proceedings of the International School of Physics, Course XXI, pp. 93–146. Academic, New York (1963)

    Google Scholar 

  18. Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry. Springer, New York (2003)

    Google Scholar 

  19. Marsden, J., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D 7(1), 305–323 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Morrison, P.: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70(2), 467 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Morrison, P.: Hamiltonian fluid dynamics. Encycl. Math. Phys. 2 (2006)

    Google Scholar 

  22. Müller, P.: Ertel’s potential vorticity theorem in physical oceanography. Rev. Geophys. 33, 67–97 (1995)

    Article  ADS  Google Scholar 

  23. von Neumann, J.: Collected Works, Volume VI: Theory of Games, Astrophysics, Hydrodynamics and Meterology. Pergamon Press, Oxford (1963)

    Google Scholar 

  24. Newcomb, W.: Exchange invariance in fluid systems. In: Magneto-Fluid and Plasma Dynamics, vol. 1, p. 152 (1967)

    Google Scholar 

  25. Olver, P.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107. Springer, New York (1993)

    Book  Google Scholar 

  26. Padhye, N., Morrison, P.: Fluid element relabeling symmetry. Phys. Lett. A 219(5), 287–292 (1996)

    Article  ADS  Google Scholar 

  27. Padhye, N., Morrison, P.: Relabeling symmetries in hydrodynamics and magnetohydrodynamics. Plasma Phys. Rep. 22, 869–877 (1996)

    ADS  Google Scholar 

  28. van Saarloos, W.: A canonical transformation relating the Lagrangian and Eulerian description of ideal hydrodynamics. Physica A 108(2–3), 557–566 (1981)

    Article  ADS  Google Scholar 

  29. Salmon, R.: Hamilton’s principle and Ertel’s theorem. AIP Conf. Proc. 88, 127–135 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Salmon, R.: Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225–256 (1988)

    Article  ADS  Google Scholar 

  31. Salmon, R.: Lecture Notes on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998)

    Google Scholar 

  32. Seliger, R., Whitham, G.: Variational principles in continuum mechanics. Proc. R. Soc. A 305, 1–25 (1968)

    Article  ADS  MATH  Google Scholar 

  33. Serrin, J.: Mathematical principles of classical fluid mechanics. In: Fluid Dynamics I/Strömungsmechanik I, pp. 125–263. Springer, Berlin (1959)

    Google Scholar 

  34. Siriwat, P., Kaewmanee, C., Meleshko, S.: Symmetries of the hyperbolic shallow water equations and the Green-Naghdi model in Lagrangian coordinates. Int. J. Nonlinear Mech. 86, 185–195 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gualtiero Badin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Badin, G., Crisciani, F. (2018). Variational Principles in Fluid Dynamics, Symmetries and Conservation Laws. In: Variational Formulation of Fluid and Geophysical Fluid Dynamics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-59695-2_3

Download citation

Publish with us

Policies and ethics