New Variants of Hash-Division Algorithm for Tolerant and Stratified Division

  • Noussaiba Benadjmi
  • Khaled Walid Hidouci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10333)


Works done in the context of the relational division for DBMS led to several approaches. Among which, the Hash-Division algorithm proved its superiority compared to the other approaches in the most of the cases. Nowadays, current trends of division are been oriented towards flexible queries and those involving preferences. However, the emphasis was always on proposing new operators which provide more flexibility and tolerance than the classical division operator. The performance aspect has not been adequately addressed. The proposed approaches in the literature suffer from a lack of performance, especially in a large volume of data. In this paper, we attempt to address this problem. Our idea consists in exploiting the advantages offered by the classical Hash-Division algorithm to propose new variants tailored for the flexible context. We paid a special attention to the improvement of some extended tolerant operators. Furthermore, we introduce a parallel implementation of our proposed techniques. Experimental results show the efficiency of our proposition. We obtained a very satisfactory improvement in processing time (the gain exceeds a ratio of 20 in the majority of cases) in both sequential and parallel implementation.


Relational division Preferences Tolerant division Stratified division Hash-division algorithm 


  1. 1.
    Habib, W.M., Mokhtar, H.M., El-Sharkawi, M.: Processing universal quantification queries using mapreduce. In: International Conference on Big Data and Smart Computing (BIGCOMP). IEEE (2014)Google Scholar
  2. 2.
    Rantzau, R., Shapiro, L., Mitschang, B., Wang, Q.: Universal quantification in relational databases: a classification of data and algorithms. In: Jensen, C.S., Šaltenis, S., Jeffery, K.G., Pokorny, J., Bertino, E., Böhn, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 445–463. Springer, Heidelberg (2002). doi: 10.1007/3-540-45876-X_29 CrossRefGoogle Scholar
  3. 3.
    Graefe, G.: Relational division: four algorithms and their performance. In: Fifth International Conference on Data Engineering, Proceedings. IEEE (1989)Google Scholar
  4. 4.
    Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible relational queries. Fuzzy Sets Syst. 159(12), 1450–1467 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Pigozzi, G., Tsoukiàs, A., Viappiani, P.: Preferences in artificial intelligence. Ann. Math. Artif. Intell. 77(3–4), 361 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Galindo, J., et al.: Relaxing the universal quantifier of the division in fuzzy relational databases. Int. J. Intell. Syst. 16(6), 713–742 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bosc, P., HadjAli, A., Pivert, O.: La notion de division tolèrante et son intèrêt pour remédier aux réponses vides. Ingénierie des systèmes d’information 13(5), 131–154 (2008)CrossRefGoogle Scholar
  8. 8.
    Kacprzyk, J., Zadrony, S., De Tre, G.: Fuzziness in database management systems: half a century of developments and future prospects. Fuzzy Sets Syst. 281, 300–307 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bosc, P., Pivert, O., Rocacher, D.: About quotient and division of crisp and fuzzy relations. J. Intell. Inform. Syst. 29(2), 185–210 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bosc, P., Pivert, O., Rocacher, D.: A propos de la sémantique de divers opérateurs de division de relations. In: INFORSID (2006)Google Scholar
  11. 11.
    Bosc, P., Pivert, O., Soufflet, O.: On three classes of division queries involving ordinal preferences. J. Intell. Inform. Syst. 37(3), 315–331 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bosc, P., Pivert, O.: On some uses of a stratified divisor in an ordinal framework. In: Kacprzyk, J., Petry, F.E., Yazici, A. (eds.) Uncertainty Approaches for Spatial Data Modeling and Processing. SCI, vol. 271, pp. 133–154. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Wu, Y., Liu, G., Liu, Y.: Multi-user preferences based top-k query processing algorithm. In: Tenth International Conference on Computational Intelligence and Security (CIS). IEEE (2014)Google Scholar
  14. 14.
    Habib, W.M., Mokhtar, H.M., El-Sharkawi, M.: A new approach for scholars matching using universal quantifier queries. In: IEEE World Congress on Services (SERVICES). IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ecole Nationale Supérieure en Informatique(ESI)Oued-smar, AlgiersAlgeria

Personalised recommendations