Advertisement

MRRA: A New Approach for Movie Rating Recommendation

  • Chiraz Trabelsi
  • Gabriella Pasi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10333)

Abstract

Nowadays, Movie constitutes a predominant form of entertainment in human life. Most video websites such as YouTube and a number of social networks allow users to freely assign a rate to watched or bought videos or movies. In this paper, we introduce a new movie rating recommendation approach, called MRRA, based on the exploitation of the Hidden Markov Model (HMM). Specifically, we extend the HMM to include user’s rating profiles, formally represented as triadic concepts. Triadic concepts are exploited for providing important hidden correlations between rates, movies and users. Carried out experiments using a benchmark movie dataset revealed that the proposed movie rating recommendation approach outperforms conventional techniques.

Keywords

User’s rating profile model Triadic analysis Rate recommendation Hidden Markov Model 

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17, 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R., Berthier, R.N.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)Google Scholar
  3. 3.
    Cao, H., Jiang, D., Pei, J., Chen, E., Li, H.: Towards context-aware search by learning a very large variable length hidden Markov model from search logs. In: Proceedings of the 18th International World Wide Web Conference, pp. 191–200, Spain (2009)Google Scholar
  4. 4.
    Desarkar, M.S., Saxena, R., Sarkar, S.: Preference relation based matrix factorization for recommender systems. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 63–75. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31454-4_6 CrossRefGoogle Scholar
  5. 5.
    Deshpande, M., Karypis, G.: A survey of collaborative filtering techniques. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)CrossRefGoogle Scholar
  6. 6.
    Harvey., M., Carman., M.J., Ruthven., I., Crestani., F.: Bayesian latent variable models for collaborative item rating prediction. In: Proceedings of 20th ACM International Conference on Information and knowledge Management, pp. 699–708. ACM (2011)Google Scholar
  7. 7.
    He, Q., Jiang, D., Liao, Z., Hoi, S.C.H., Chang, K., Lim, E., Li, H.: Web query recommendation via sequential query prediction. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 1443–1454. IEEE, USA (2009)Google Scholar
  8. 8.
    Herlocker, J., Konstan, J.A., Riedl, J.: An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr. 5(4), 287–310 (2002)CrossRefGoogle Scholar
  9. 9.
    Herlocker, L., Konstan, A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Theoretical Models, pp. 230–237. ACM (1999)Google Scholar
  10. 10.
    Hotho, A.: Data mining on folksonomies. In: Armano, G., de Gemmis, M., Semeraro, G., Vargiu, E. (eds.) Intelligent Information Access. Studies in Computational Intelligence, vol. 301, pp. 57–82. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared conceptualizations in folksonomies. Web Semant. 6, 38–53 (2008)CrossRefGoogle Scholar
  12. 12.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995). doi: 10.1007/3-540-60161-9_27 CrossRefGoogle Scholar
  13. 13.
    Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5), 393–408 (1999)CrossRefGoogle Scholar
  14. 14.
    Rabiner, L.: A tutorial on hidden Markov models and selected applications inspeech recognition. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  15. 15.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)Google Scholar
  16. 16.
    Trabelsi, C., Jelassi, N., Ben Yahia, S.: Scalable mining of frequent tri-concepts from folksonomies. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS, vol. 7302, pp. 231–242. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30220-6_20 CrossRefGoogle Scholar
  17. 17.
    Yoo, J., Choi, S.: Bayesian matrix co-factorization: variational algorithm and cramér-rao bound. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS, vol. 6913, pp. 537–552. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23808-6_35 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculté des Sciences de Tunis, LIPAH-LR 11ES14Université de Tunis El ManarTunisTunisia
  2. 2.DISCo Viale SarcaUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations