Advertisement

Flexible Query Answering with the powerset-AI Operator and Star-Based Ranking

  • Lena Wiese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10333)

Abstract

Query generalization is one option to implement flexible query answering. In this paper, we introduce a generalization operator (called powerset-AI) that extends conventional Anti-Instantiation (AI). We analyze structural modifications imposed by the generalization to obtain syntactic similarity measures (based on the star feature) that rank generalized queries with regard to their closeness to the original query.

Keywords

Generalization Operator Predicate Symbol Jaccard Index Conjunctive Query Original Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bakhtyar, M., Dang, N., Inoue, K., Wiese, L.: Implementing inductive concept learning for cooperative query answering. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Data Analysis, Machine Learning and Knowledge Discovery. SCDAKO, pp. 127–134. Springer, Cham (2014). doi: 10.1007/978-3-319-01595-8_14 CrossRefGoogle Scholar
  2. 2.
    Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In: Christiansen, H., Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 1–12. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24764-4_1 CrossRefGoogle Scholar
  3. 3.
    Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20(2), 111–161 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sakama, C., Inoue, K.: Negotiation by abduction and relaxation. In: International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), IFAAMAS, pp. 1010–1025 (2007)Google Scholar
  5. 5.
    Sá, S., Alcântara, J.: Abduction-based search for cooperative answers. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., Torre, L. (eds.) CLIMA 2011. LNCS, vol. 6814, pp. 208–224. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22359-4_15 CrossRefGoogle Scholar
  6. 6.
    Urbanova, L., Vychodil, V., Wiese, L.: Applications of ordinal ranks to flexible query answering. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 16–29. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33362-0_2 CrossRefGoogle Scholar
  7. 7.
    Belohlavek, R., Vychodil, V.: A logic of graded attributes. Arch. Math. Logic 54(7–8), 785–802 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wiese, L.: Taxonomy-based fragmentation for anti-instantiation in distributed databases. In: Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing International Workshop on Intelligent Techniques and Architectures for Autonomic Clouds (ITAAC13), pp. 363–368. IEEE Computer Society (2013)Google Scholar
  9. 9.
    Wiese, L.: Clustering-based fragmentation and data replication for flexible query answering in distributed databases. J. Cloud Comput. 3(1), 18 (2014)CrossRefGoogle Scholar
  10. 10.
    Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C.: CoBase: a scalable and extensible cooperative information system. JIIS 6(2/3), 223–259 (1996)Google Scholar
  11. 11.
    Halder, R., Cortesi, A.: Cooperative query answering by abstract interpretation. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 284–296. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18381-2_24 CrossRefGoogle Scholar
  12. 12.
    Pivert, O., Jaudoin, H., Brando, C., Hadjali, A.: A method based on query caching and predicate substitution for the treatment of failing database queries. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 436–450. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14274-1_32 CrossRefGoogle Scholar
  13. 13.
    Motro, A.: Flex: a tolerant and cooperative user interface to databases. IEEE Trans. Knowl. Data Eng. 2(2), 231–246 (1990)CrossRefGoogle Scholar
  14. 14.
    Godfrey, P., Minker, J., Novik, L.: An architecture for a cooperative database system. In: Litwin, W., Risch, T. (eds.) ADB 1994. LNCS, vol. 819, pp. 3–24. Springer, Heidelberg (1994). doi: 10.1007/3-540-58183-9_35 CrossRefGoogle Scholar
  15. 15.
    Godfrey, P.: Minimization in cooperative response to failing database queries. IJCS 6(2), 95–149 (1997)Google Scholar
  16. 16.
    Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77688-8_2 CrossRefGoogle Scholar
  17. 17.
    Selmer, P., Poulovassilis, A., Wood, P.T.: Implementing flexible operators for regular path queries. In: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), CEUR Workshop Proceedings, vol. 1330, pp. 149–156 (2015)Google Scholar
  18. 18.
    Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting consistent updates of RDFS graphs. In: Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 185–199. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33876-2_18 CrossRefGoogle Scholar
  19. 19.
    Fazzinga, B., Flesca, S., Furfaro, F.: On the expressiveness of generalization rules for XPath query relaxation. In: ACM International Conference on Proceedings Series Fourteenth Int’l Database Engineering and Applications Symposium (IDEAS), pp. 157–168. ACM(2010)Google Scholar
  20. 20.
    Liu, J., Yan, D.: Answering approximate queries over XML data. IEEE Trans. Fuzzy Syst. 24(2), 288–305 (2016)CrossRefGoogle Scholar
  21. 21.
    Biskup, J., Wiese, L.: A sound and complete model-generation procedure for consistent and confidentiality-preserving databases. Theoret. Comput. Sci. 412(31), 4044–4072 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative answering. JIIS 1(3/4), 293–321 (1992)Google Scholar
  23. 23.
    Ferilli, S., Basile, T.M.A., Biba, M., Mauro, N.D., Esposito, F.: A general similarity framework for horn clause logic. Fundam. Informaticae 90(1–2), 43–66 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of GöttingenGöttingenGermany

Personalised recommendations