Advertisement

Application of the InterCriteria Analysis Over Air Quality Data

  • Evdokia Sotirova
  • Veselina Bureva
  • Irena Markovska
  • Sotir Sotirov
  • Desislava Vankova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10333)

Abstract

In the paper application of the InterCriteria analysis approach to real dataset with instances of hourly averaged responses from an array of 5 metal oxide chemical sensors embedded in an air quality chemical multisensor device [29, 30] is represented. The InterCriteria analysis is a new method that can be used for multicriteria decision making. The aim is to analyze the correlations between 12 indicators representing the recordings of on field deployed air quality chemical sensor devices responses.

Keywords

Air quality InterCriteria analysis Intuitionistic fuzzy sets Index matrix Multicriteria decision making 

Notes

Acknowledgments

The authors are thankful for the support provided by the Bulgarian National Science Fund under Grant Ref. No. DFNI-I-02-5 “InterCriteria Analysis: A New Approach to Decision Making”.

References

  1. 1.
    Angelova, M., Roeva, O., Pencheva, T.: InterCriteria analysis of a cultivation process model based on the genetic algorithm population size influence. Notes Intuitionistic Fuzzy Sets 21(4), 90–103 (2015)Google Scholar
  2. 2.
    Angelova, M., Roeva, O., Pencheva, T.: InterCriteria analysis of crossover and mutation rates relations in simple genetic algorithm. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems (FedCSIS 2015), pp. 419–424 (2015)Google Scholar
  3. 3.
    Atanassov, K., Mavrov, D., Atanassova, V.: InterCriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuitionistic Fuzzy Sets Gen. Nets 11, 1–8 (2014)Google Scholar
  4. 4.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes Intuitionistic Fuzzy Sets 19(3), 1–13 (2013)MATHGoogle Scholar
  5. 5.
    Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Studies in Computational Intelligence Series, vol. 573. Springer, Cham (2014)MATHGoogle Scholar
  6. 6.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  7. 7.
    Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes Intuitionistic Fuzzy Sets 21(1), 81–88 (2015)Google Scholar
  8. 8.
    Atanassova, V., Doukovska, L., Atanassov, K., Mavrov, D.: InterCriteria decision making approach to EU member states competitiveness analysis. In: Proceedings of the International Symposium on Business Modeling and Software Design (BMSD 2014), pp. 289–294 (2014)Google Scholar
  9. 9.
    Atanassova, V., Doukovska, L., Karastoyanov, D., Čapkovič, F.: InterCriteria decision making approach to EU member states competitiveness analysis: trend analysis. In: Angelov, P., et al. (eds.) Intelligent Systems 2014. AISC, vol. 322, pp. 107–115. Springer, Cham (2015). doi: 10.1007/978-3-319-11313-5_10 Google Scholar
  10. 10.
    Atanassova, V., Doukovska, L., Mavrov, D., Atanassov, K.: InterCriteria decision making approach to EU member states competitiveness analysis: temporal and threshold analysis. In: Angelov, P., et al. (eds.) Intelligent Systems’2014. AISC, vol. 322, pp. 95–106. Springer, Cham (2015). doi: 10.1007/978-3-319-11313-5_9 Google Scholar
  11. 11.
    Bureva, V., Sotirova, E., Sotirov, S., Mavrov, D.: Application of the InterCriteria decision making method to Bulgarian universities ranking. Notes Intuitionistic Fuzzy Sets 21(2), 111–117 (2015)Google Scholar
  12. 12.
    Doukovska, L., Karastoyanov, D., Stoymenov, N., Kalaykov, I.: Intercriteria decision making approach for iron powder briquetting. In: Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pp. 292–296 (2015)Google Scholar
  13. 13.
    Doukovska, L., Atanassova, V., Shahpazov, G., Capkovic, F.: InterCriteria analysis applied to EU micro, small, medium and large enterprises. In: Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pp. 284–291 (2015)Google Scholar
  14. 14.
    Doukovska, L., Shahpazov, G., Atanassova, V.: Intercriteria analysis of the creditworthiness of SMEs. A case study. Notes Intuitionistic Fuzzy Sets 22(2), 108–118 (2016)Google Scholar
  15. 15.
    Fidanova, S., Roeva, O., Paprzycki, M.: InterCriteria analysis of ant colony optimization application to GPS surveying problems. Issues Intuitionistic Fuzzy Sets and Gen. Nets 12, 20–38 (2015)Google Scholar
  16. 16.
    Fidanova, S., Roeva, O.: InterCriteria analysis of different metaheuristics applied to E. coli cultivation process. In: Numerical Methods for Scientific Computations and Advanced Applications, pp. 21–25 (2016)Google Scholar
  17. 17.
    Fidanova, S., Roeva, O., Gepner, P., Paprzycki, M.: InterCriteria analysis of ACO start strategies. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS 2016), pp. 547–550 (2016)Google Scholar
  18. 18.
    Fidanova, S., Roeva, O., Mucherino, A., Kapanova, K.: InterCriteria analysis of ant algorithm with environment change for GPS surveying problem. In: Dichev, C., Agre, G. (eds.) AIMSA 2016. LNCS, vol. 9883, pp. 271–278. Springer, Cham (2016). doi: 10.1007/978-3-319-44748-3_26 CrossRefGoogle Scholar
  19. 19.
    Ilkova, T., Petrov, M.: Intercriteria analysis for identification of Escherichia coli fed-batch mathematical model. Mat. Methods Technol. 9, 598–608 (2015)Google Scholar
  20. 20.
    Ilkova, T., Roeva, O., Vassilev, P., Petrov, M.: InterCriteria analysis in structural and parameter identification of L-lysine production model. Issues Intuitionistic Fuzzy Sets Gen. Nets 12, 39–52 (2015)Google Scholar
  21. 21.
    Karastoyanov, D., Doukovska, L., Gyoshev, S., Kalaykov, I.: Intercriteria decision making approach for metal chips briquetting. In: Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pp. 297–301 (2015)Google Scholar
  22. 22.
    Kostadinov, T., Petkov, T.: An example of intercriteria analysis application to weather parameters. Notes Intuitionistic Fuzzy Sets 21(2), 126–133 (2015)Google Scholar
  23. 23.
    Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the InterCriteria decision making method to universities ranking. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 365–372. Springer, Cham (2016). doi: 10.1007/978-3-319-26211-6_31 CrossRefGoogle Scholar
  24. 24.
    Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 385–397. Springer, Cham (2016). doi: 10.1007/978-3-319-26211-6_33 CrossRefGoogle Scholar
  25. 25.
    Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes Intuitionistic Fuzzy Sets 21(2), 99–110 (2015)Google Scholar
  26. 26.
    Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 301–313. Springer, Cham (2016). doi: 10.1007/978-3-319-26211-6_26 CrossRefGoogle Scholar
  27. 27.
    Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria Analysis of ACO and GA Hybrid Algorithms. Studies in Computational Intelligence, vol. 610, pp. 107–126. Springer, Cham (2016)Google Scholar
  28. 28.
    Roeva, O., Fidanova, S., Vassilev, P., Gepner, P.: InterCriteria analysis of a model parameters identification using genetic algorithm. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, pp. 501–506 (2015)Google Scholar
  29. 29.
    Ribagin, S., Shannon, A., Atanassov, K.: Intuitionistic fuzzy evaluations of the elbow joint range of motion. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 225–230. Springer, Cham (2016). doi: 10.1007/978-3-319-26211-6_19 CrossRefGoogle Scholar
  30. 30.
    Saverio, D.V.: ENEA - National Agency for New Technologies, Energy and Sustainable Economic Development. Air Quality Data Set. https://archive.ics.uci.edu/ml/datasets/Air+Quality
  31. 31.
    Saverio, D.V., Massera, E., Piga, M., Martinotto, L., Francia, G.D.: On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B Chem. 129(2), 750–757 (2008)CrossRefGoogle Scholar
  32. 32.
    Stratiev, D., Shishkova, I., Nedelchev, A., Kirilov, K., Nikolaychuk, E., Ivanov, A., Sharafutdinov, I., Veli, A., Mitkova, M., Tsaneva, T., Petkova, N., Sharpe, R., Yordanov, D., Belchev, Z., Nenov, S., Rudnev, N., Atanassova, V., Sotirova, E., Sotirov, S., Atanassov, K.: Investigation of relationships between petroleum properties and their impact on crude oil compatibility. Energy Fuels 29(12), 7836–7854 (2015)CrossRefGoogle Scholar
  33. 33.
    Stratiev, D., Sotirov, S., Shishkova, I., Nedelchev, A., Sharafutdinov, I., Veli, A., Mitkova, M., Yordanov, D., Sotirova, E., Atanassova, V., Atanassov, K., Stratiev, D., Rudnev, N., Ribagin, S.: Investigation of relationships between bulk properties and fraction properties of crude oils by application of the intercriteria analysis. Pet. Sci. Technol. 34(13), 1113–1120 (2016)CrossRefGoogle Scholar
  34. 34.
    Vankova D., Sotirova, E., Bureva, V.: An application of the InterCriteria analysis approach to health-related quality of life. In: 11th International Workshop on IFSs, Banská Bystrica, Slovakia, 30 October 2015, vol. 21, no. 5, pp. 40–48 (2015). Notes on Intuitionistic Fuzzy SetsGoogle Scholar
  35. 35.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 333–353 (1965)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Intelligent Systems LaboratoryUniversity “Prof. Dr. Assen Zlatarov”BurgasBulgaria
  2. 2.Department of Silicate TechnologyUniversity “Prof. Dr. Assen Zlatarov”BurgasBulgaria
  3. 3.Medical University-Varna “Prof. Dr. P. Stoyanov”VarnaBulgaria

Personalised recommendations