Advertisement

DRIMS: A Software Tool to Incrementally Maintain Previous Discovered Rules

  • Alain Pérez-Alonso
  • Ignacio J. Blanco
  • Jose M. Serrano
  • Luisa M. González-González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10333)

Abstract

A wide spectrum of methods for knowledge extraction have been proposed up to date. These expensive algorithms become inexact when new transactions are made into business data, an usual problem in real-world applications. The incremental maintenance methods arise to avoid reruns of those algorithms from scratch by reusing information that is systematically maintained. This paper introduces a software tool: Data Rules Incremental Maintenance System (DRIMS) which is a free tool written in Java for incrementally maintain three types of rules: association rules, approximate dependencies and fuzzy association rules. Several algorithms have been implemented in this tool for relational databases using their active resources. These algorithms are inspired in efficient computation of changes and do not include any mining technique. We operate on discovered rules in their final form and sustain measures of rules up-to-date, ready for real-time decision support. Algorithms are applied over a generic form of measures allowing the maintenance of a wide rules’ metrics in an efficient way. DRIMS software tool do not discover new knowledge, it has been designed to efficiently maintain interesting information previously extracted.

Keywords

Association rules Approximate dependencies Incremental maintenance Active databases 

Notes

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund - ERDF (Fondo Europeo de Desarrollo Regional - FEDER) under project TIN2014-58227-P Descripción lingüística de información visual mediante técnicas de minería de datos y computación flexible.

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Alcalá-Fdez, J., Sánchez, L., García, S., Jesus, M., Ventura, S., Garrell, J., Otero, J., Romero, C., Bacardit, J., Rivas, V., Fernández, J., Herrera, F.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)CrossRefGoogle Scholar
  3. 3.
    Berzal, F., Blanco, I., Sánchez, D., Vila, M.A.: Measuring the accuracy and interest of association rules: a new framework. Intell. Data Anal. 6(3), 221–235 (2002)zbMATHGoogle Scholar
  4. 4.
    Berzal, F., Cubero, J.C., Marín, N., Serrano, J.M.: TBAR: an efficient method for association rule mining in relational databases. Data Knowl. Eng. 37(1), 47–64 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cañas, A., Calandria, D., Ortigosa, E., Ros, E., Díaz, A.: Swad: web system for education support. In: Fernández-Manjón, B., Sánchez-Pérez, J.M., Gómez-Pulido, J.A., Vega-Rodriguez, M.A., Bravo-Rodriguez, J. (eds.) Computers and Education: E-Learning, From Theory to Practice, pp. 133–142. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  6. 6.
    Cabot, J., Teniente, E.: Computing the relevant instances that may violate an OCL constraint. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 48–62. Springer, Heidelberg (2005). doi: 10.1007/11431855_5 CrossRefGoogle Scholar
  7. 7.
    Ceri, S., Widom, J.: Deriving production rules for incremental view maintenance. In: Proceedings of the 17th International Conference on Very Large Data Bases, pp. 577–589 (1991)Google Scholar
  8. 8.
    Cheung, D., Han, J., Ng, V., Wong, C.Y.: Maintenance of discovered association rules in large databases: an incremental updating technique. In: Proceedings of the Twelfth International Conference on Data Engineering, pp. 106–114 (1996)Google Scholar
  9. 9.
    Delgado, M., Marin, N., Sánchez, D., Vila, M.A.: Fuzzy association rules: general model and applications. IEEE Trans. Fuzzy Syst. 11(2), 214–225 (2003)CrossRefGoogle Scholar
  10. 10.
    Greco, S., Słowiński, R., Szczȩch, I.: Properties of rule interestingness measures and alternative approaches to normalization of measures. Inf. Sci. 216, 1–16 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gupta, A., Mumick, I.S., et al.: Maintenance of materialized views: problems, techniques, and applications. IEEE Data Eng. Bull. 18(2), 3–18 (1995)Google Scholar
  12. 12.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1–12 (2000)CrossRefGoogle Scholar
  13. 13.
    Hong, T.P., Lin, T.C., Lin, T.C.: Mining complete fuzzy frequent itemsets by tree structures. In: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 563–567 (2010)Google Scholar
  14. 14.
    Lee, Y.S., Yen, S.J.: Incrementally mining frequent patterns from large database. In: Pedrycz, W., Chen, S.-M. (eds.) Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, vol. 8, pp. 121–140. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures for association rules: user oriented description and multiple criteria decision aid. Eur. J. Oper. Res. 184(2), 610–626 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Li, X., Deng, Z.-H., Tang, S.: A fast algorithm for maintenance of association rules in incremental databases. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS, vol. 4093, pp. 56–63. Springer, Heidelberg (2006). doi: 10.1007/11811305_5 CrossRefGoogle Scholar
  17. 17.
    Lichman, M.: UCI machine learning repository (2013)Google Scholar
  18. 18.
    Lin, C.W., Hong, T.P.: Maintenance of pre large trees for data mining with modified records. Inform. Sci. 278, 88–103 (2014)CrossRefGoogle Scholar
  19. 19.
    Liu, C.-Y., Tseng, C.-Y., Chen, M.-S.: Incremental mining of significant URLs in real-time and large-scale social streams. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS, vol. 7819, pp. 473–484. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37456-2_40 CrossRefGoogle Scholar
  20. 20.
    Liu, H., Lin, Y., Han, J.: Methods for mining frequent items in data streams: an overview. Knowl. Inf. Syst. 26(1), 1–30 (2011)CrossRefGoogle Scholar
  21. 21.
    Medina, R., Nourine, L.: A unified hierarchy for functional dependencies, conditional functional dependencies and association rules. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 98–113. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01815-2_9 CrossRefGoogle Scholar
  22. 22.
    Nakayama, H., Hoshino, A., Ito, C., Kanno, K.: Formalization and discovery of approximate conditional functional dependencies. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013. LNCS, vol. 8055, pp. 118–128. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40285-2_12 CrossRefGoogle Scholar
  23. 23.
    Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf, Dallas (2013)Google Scholar
  24. 24.
    Paton, N.W., Díaz, O.: Active database systems. ACM Comput. Surv. 31(1), 63–103 (1999)CrossRefGoogle Scholar
  25. 25.
    Pérez-Alonso, A., Blanco, I., Serrano, J.M., González-González, L.M.: Drims: data rules incremental maintenance system (2016). https://github.com/AlainPerez/DRIMS-Repository
  26. 26.
    Pérez-Alonso, A., Medina, I.J.B., González-González, L.M., Serrano Chica, J.M.: Incremental maintenance of discovered association rules and approximate dependencies. Intell. Data Anal. 21(1), 117–133 (2017)CrossRefGoogle Scholar
  27. 27.
    Qin, S.J.: Process data analytics in the era of big data. AIChE J. 60(9), 3092–3100 (2014)CrossRefGoogle Scholar
  28. 28.
    Sánchez, D., Serrano, J.M., Blanco, I., Martín-Bautista, M.J., Vila, M.A.: Using association rules to mine for strong approximate dependencies. Data Min. Knowl. Disc. 16(3), 313–348 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sauter, V.: Decision Support Systems for Business Intelligence. Wiley, Hoboken (2014)zbMATHGoogle Scholar
  30. 30.
    Shah, S., Chauhan, N., Bhanderi, S.: Incremental mining of association rules: a survey. Int. J. Comput. Sci. Inf. Technol. 3(3), 4071–4074 (2012)Google Scholar
  31. 31.
    Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. ACM SIGMOD Rec. 25, 1–12 (1996)CrossRefGoogle Scholar
  32. 32.
    Tan, J., Bu, Y., Zhao, H.: Incremental maintenance of association rules over data streams. In: 2nd International Conference on Networking and Digital Society (ICNDS), vol. 2, pp. 444–447 (2010)Google Scholar
  33. 33.
    Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 22(3), 381–405 (2004)CrossRefGoogle Scholar
  34. 34.
    Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)CrossRefGoogle Scholar
  35. 35.
    Zia, Z.K., Tipu, S.K., Khan, M.I.: Research on association rule mining. Adv. Comput. Math. Appl. 2(1), 226–236 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alain Pérez-Alonso
    • 1
  • Ignacio J. Blanco
    • 2
  • Jose M. Serrano
    • 3
  • Luisa M. González-González
    • 1
  1. 1.University “Marta Abreu” of Las VillasSanta ClaraCuba
  2. 2.University of GranadaGranadaSpain
  3. 3.University of JaénJaénSpain

Personalised recommendations