Advertisement

Chemical Composition of Bee Pollen

  • Adriane Alexandre Machado De-MeloEmail author
  • Ligia Bicudo de Almeida-Muradian
Chapter

Abstract

Bee pollen is produced by bees as a nutrient source in the hive. Its composition varies according to the region where it is produced and also with the collection and processing conditions. Proteins are the main substances of this product; however, important micronutrients and bioactive compounds are also present. Many studies have been conducted with the aim of determining the chemical composition of the bee pollen, and the results of some of these studies will be presented in this chapter. The contents of proteins and amino acids, lipids and fatty acids, vitamins, minerals and phenolic compounds in samples collected in different countries will be discussed, considering the botanical origin and other factors that influenced these parameters.

Keywords

Bee pollen Nutritional value Amino acids Fatty acids Vitamins Minerals Phenolic compounds Botanical origin 

References

  1. Abdella EM, Tohamy A, Ahmad RR (2009) Antimutagenic activity of egyptian propolis and bee pollen water extracts against cisplatin-induced chromosomal abnormalities in bone marrow cells of mice. Iran J Cancer Prev 2:175–181Google Scholar
  2. Aguirre-Hernández E, González-Trujano E, Martínez AL, Moreno J, Kite G, Terrazas T, Soto-Hernández M (2010) HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana. J Ethnopharmacol 127:91–97PubMedCrossRefGoogle Scholar
  3. Almeida-Muradian LB (2009) Qualidade dos produtos apícolas e otimização quimiométrica dos métodos de análise do mel por espectroscopia no infravermelho (FT-IR ATR)Google Scholar
  4. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM (2005) Chemical composition and botanical evaluation of dried bee pollen pellets. J Food Compos Anal 18:105–111CrossRefGoogle Scholar
  5. Angelo PM, Jorge N (2007) Compostos fenólicos em alimentos – uma breve revisão. Rev Inst Adolfo Lutz 66:232–240Google Scholar
  6. Arruda VAS (2013) Pólen apícola desidratado: composição físico-química, qualidade microbiológica, compostos fenólicos e flavonoides, atividade antioxidante e origem botânica. http://www.teses.usp.br/teses/disponiveis/9/9131/tde-22062015-172352/es.php. Accessed 26 Feb 2017
  7. Arruda VAS, Estevinho MLF, Almeida-Muradian LB (2013a) Presence and stability of B complex vitamins in bee pollen using different storage conditions. Food Chem Toxicol 51:143–148PubMedCrossRefGoogle Scholar
  8. Arruda VAS, Santos-Pereira AA, Freitas AS, Barth OM, Almeida-Muradian LB (2013b) Dried bee pollen: B complex vitamins, physicochemical and botanical composition. J Food Compos Anal 29:100–105CrossRefGoogle Scholar
  9. Avni D, Hendriksma HP, Dag A, Uni Z, Shafir S (2014) Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean. J Insect Physiol 69:65–73PubMedCrossRefGoogle Scholar
  10. Baldi-Coronel B, Grasso D, Pereira SC, Fernández G (2004) Caracterización bromatológica del polen apícola argentino. Cienc Docencia Tecnol 29:145–181Google Scholar
  11. Ball GFM (1994) Water-soluble vitamin assays in human nutrition. Chapman & Hall, LondonCrossRefGoogle Scholar
  12. Ball GFM (1998) Bioavailability and analysis of vitamins in foods. Chapman & Hall, LondonCrossRefGoogle Scholar
  13. Barajas J, Cortes-Rodriguez M, Rodríguez-Sandoval E (2012) Effect of temperature on the drying process of bee pollen from two zones of Colombia. J Food Process Eng 35:134–148CrossRefGoogle Scholar
  14. Barreto LMRC, Funari SRC, Orsi RO (2005a) Composição e qualidade do pólen apícola proveniente de sete Estados brasileiros e do Distrito Federal. Bol Ind Anim 62:167–175Google Scholar
  15. Barreto LMRC, Funari SRC, Orsi RO (2005b) Pólen apícola: perfil da produção no Brasil. In: Annals of Congresso De Apicultura Del Mercosur 1. Punta Del Este, Sociedad de Apicultores Uruguaya, p 20Google Scholar
  16. Barth OM (2004) Melissopalynology in Brazil: a review of pollen analysis of honeys, propolis and pollen loads of bees. Sci Agric 61:342–350CrossRefGoogle Scholar
  17. Barth OM, Freitas AS, Oliveira ES, Silva RA, Maester FM, Andrella RR, Cardozo GM (2010) Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization. An Acad Bras Cienc 82:893–902PubMedCrossRefGoogle Scholar
  18. Bastos DHM, Barth OM, Rocha CI, Cunha IBS, Carvalho PO, Torres EAS (2004) Fatty acid composition and palynological analysis of bee (Apis) pollen loads in the states of Sao Paulo and Minas Gerais, Brazil. J Apicult Res 43:35–39CrossRefGoogle Scholar
  19. Bastos DHM, Rocha CI, Cunha IBS, Carvalho PO, Torres EAS (2003) Composition and quality of bee-collected pollen commercialized in some country towns in São Paulo and Minas Gerais - Brazil. Rev Inst Adolfo Lutz 62:239–244Google Scholar
  20. Bogdanov S (2012a) The bee pollen book: chapter 1. http://www.bee-hexagon.net. Accessed 12 Nov 2014
  21. Bogdanov S (2012b) The bee pollen book: chapter 2. http://www.bee-hexagon.net. Accessed 12 Nov 2014
  22. Brazil (2001) Technical regulations of identity and quality of bee venom, beeswax, royal jelly, lyophilized royal jelly, bee pollen, propolis and propolis extract. http://www.agricultura.gov.br/legislacao/sislegis. Accessed 24 Apr 2015
  23. Brazil (2005) Technical regulation on the Recommended Dietary Allowance (RDA) of proteins, vitamins and minerals. http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0269_22_09_2005.html. Accessed 01 Jul 2017
  24. Cabrera C, Montenegro G (2013) Pathogen control using a natural Chilean bee pollen extract of known botanical origin. Cienc Investig Agrar 40:223–230CrossRefGoogle Scholar
  25. Calviello G, Serini S, Piccioni E (2007) n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem 14:81–89CrossRefGoogle Scholar
  26. Campos MGR, Markham KR, Mitchell KA, Cunha AP (1997) An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochem Anal 8:181–185CrossRefGoogle Scholar
  27. Campos MGR, Webby RF, Markham KR, Mitchell KA, Da Cunha AP (2003) Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J Agric Food Chem 51:742–745PubMedCrossRefGoogle Scholar
  28. Campos MGR, Bogdanov S, Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C (2008) Pollen composition and standardisation of analytical methods. J Apicult Res Bee World 47:156–163CrossRefGoogle Scholar
  29. Campos MGR, Almaraz-Abarca N, Matos MP, Gomes NM, Arruda VA, Barth OM (2015) Zea mays L. pollen: an approach to its quality control. J Agric Sci Technol B 5:513–522Google Scholar
  30. Carl JL, Richard VM, Mandeep RM, Hector OV (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol 54:585–594CrossRefGoogle Scholar
  31. Carpes ST, Prado A, Moreno IAM, Mourão GB, Alencar SM, Masson ML (2008) Avaliação do potencial antioxidante do pólen apícola produzido na Região Sul do Brasil. Quím Nova 31:1660–1664CrossRefGoogle Scholar
  32. Carpes ST, Mourão GB, Alencar SM, Masson ML (2009) Chemical composition and free radical scavenging activity of Apis mellifera bee pollen from Southern Brazil. Braz J Food Technol 12:220–229CrossRefGoogle Scholar
  33. Carratu E, Sanzini E (2005) Sostanze biologicamente attive presenti negli alimenti di origine vegetable. Ann Ist Super Sanità 41:7–16PubMedGoogle Scholar
  34. Caulfield LE, Black RE (2004) Zinc deficiency. In: Ezzati M, Lopez AD, Rodgers A, CJL M (eds) Comparative quantification of health risks. World Health Organization, Geneva, pp 257–280Google Scholar
  35. Chantarudee A, Phuwapraisirisan P, Kimura K, Okuyama M, Mori H, Kimura A (2012) Chemical constituents and free radical scavenging activity of corn pollen collected from Apis mellifera hives compared to floral corn pollen at Nan, Thailand. BMC Complement Altern Med 12:1–12CrossRefGoogle Scholar
  36. Cheatham CL, Colombo J, Carlson SE (2006) n-3 fatty acids and cognitive and visual acuity development: methodologic and conceptual considerations. Am J Clin Nutr 83:1458S–1466SPubMedGoogle Scholar
  37. Cook SM, Awmack CS, Murray DA, Williams IH (2003) Are honey bees' foraging preferences affected by pollen amino acid composition? Ecol Ent 28:622–627CrossRefGoogle Scholar
  38. Cunha AP, Roque OR (2009a) Compostos fenólicos: características e origem biossintética. In: Cunha AP (ed) Farmacognosia e fitoquímica. Fundação Calouste Benkian, Lisboa, pp 211–224Google Scholar
  39. Cunha AP, Roque OR (2009b) Obtenção de moléculas com atividade farmacológica a partir de material vegetal e sua transformação em medicamento. In: Cunha AP (ed) Farmacognosia e fitoquímica. Lisboa, Fundação Calouste Benkian, pp 109–123Google Scholar
  40. Daoud A, Malika D, Bakari S, Hfaiedh N, Mnafgui K, Kadri A (2015) Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. Arab J Chem. doi: 10.1016/j.arabjc.2015.07.014
  41. De-Melo AAM (2015) Perfil químico e microbiológico, cor, análise polínica e propriedades biológicas do pólen apícola desidratado. http://www.teses.usp.br/teses/disponiveis/9/9131/tde-18122015-142742/pt-br.php. Accessed 26 Feb 2017
  42. De-Melo AAM, Estevinho MLMF, Sattler JAG, Souza BR, Silva-Freitas A, Barth OM (2016) Effect of processing conditions on characteristics of dehydrated bee-pollen and correlation between quality parameters. Food Sci Technol 65:808–815Google Scholar
  43. Domínguez-Valhondo D, Gil DB, Hernández MT, González-Gómez D (2011) Influence of the commercial processing and floral origin on bioactive and nutritional properties of honeybee-collected pollen. Int J Food Sci Tech 46:2204–2211Google Scholar
  44. Donadieu Y (1983) Le pollen: thérapeutique naturelle, 6th edn. Maloine, ParisGoogle Scholar
  45. Dutcher RA (1918) Observations on the curative properties of honey, nectar, and corn pollen in avian polyneuritis. J Biol Chem 36:551–555Google Scholar
  46. Estevinho ML, Rodrigues S, Pereira AP, Feás X (2012) Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. Int J Food Sci Technol 47:429–435CrossRefGoogle Scholar
  47. FAO Food and Agriculture Organization of the United Nations (2011) Dietary protein quality evaluation in human nutrition. http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf. Accessed 12 Dec 2016
  48. Fanali C, Dugo L, Rocco A (2013) Nano-liquid chromatography in nutraceutical analysis: Determination of polyphenols in bee pollen. J Chromatogr A 1313:270–274Google Scholar
  49. Fatrcová-Šramková K, Nôžková J, Kačániová M, Máriássyová M, Rovná K, Stričík M (2013) Antioxidant and antimicrobial properties of monofloral bee pollen. J Environ Sci Health B 48:133–138PubMedCrossRefGoogle Scholar
  50. Féas X, Vázquez-Tato MP, Estevinho L, Seijas JA, Iglesias A (2012) Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 17:8359–8377PubMedCrossRefGoogle Scholar
  51. Forsén S, Kördel J (1994) Calcium in biological systems. In: Bertini I, Gray HB, Lippard SJ, Valentine JS (eds) Bioinorganic chemistry. University Science Books, Mill Valley, CA, pp 107–166Google Scholar
  52. Formicki G, Gren A, Stawarz R, Zysk B, Gal A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22:99–106Google Scholar
  53. Freire KRL, Lins ACS, Dórea MC, Santos FAR, Camara CA, Silva TMS (2012) Palynological origin, phenolic content, and antioxidant properties of honeybee-collected pollen from Bahia, Brazil. Molecules 17:1652–1664PubMedCrossRefGoogle Scholar
  54. Fuenmayor C, Zuluaga C, Díaz C, Quicazán M, Cosio M, Mannino S (2014) Evaluation of the physicochemical and functional properties of Colombian bee pollen. Rev MVZ Córdoba 19:4003–4014CrossRefGoogle Scholar
  55. Funari SRC, Rocha HC, Sforcin JM, Filho HG, Curi PR, Gomes Dierckx SMA (2003) Composições bromatológica e mineral do pólen coletado por abelhas africanizadas (Apis mellifera L.) em Botucatu, Estado de São Paulo. Arch Latinoam Prod Anim 11:88–93Google Scholar
  56. Gabriele M, Parri E, Felicioli A, Sagona S, Pozzo L, Biondi C (2015) Phytochemical composition and antioxidant activity of tuscan bee pollen of different botanic origins. Ital J Food Sci 27:248–259Google Scholar
  57. González-Paramás AMG, Bárez JAG, Marcos CC, García-Villanova RJ, Sánchez JS (2006) HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chem 95:148–156CrossRefGoogle Scholar
  58. Graikou K, Kapeta S, Aligiannis N, Sotiroudis G, Chondrogianni N, Gonos E (2011) Chemical analysis of Greek pollen – antioxidant, antimicrobial and proteasome activation properties. Chem Cent J 5:1–9CrossRefGoogle Scholar
  59. Halliwell B, Gutteridge J (2007) Free radicals in biology and Medicine, 4rd edn. Oxford University Press Inc., New York, NYGoogle Scholar
  60. Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm 2007:1–10CrossRefGoogle Scholar
  61. Herbert JREW, Vanderslice JT, Huang M, Higgs DJ (1987) Levels of thiamine and its esters in bee collected pollen using liquid chromatography and robotics. Apidologie 18:129–136CrossRefGoogle Scholar
  62. Horst MA, Lajolo FM (2011) Biodisponibilidade de compostos bioativos de alimentos. http://wwwfcfuspbr. Accessed 15 Jun 2013
  63. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefGoogle Scholar
  64. Human H, Nicolson SW (2006) Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 67:1486–1492PubMedCrossRefGoogle Scholar
  65. Kacániová M, Vukovic N, Chlebo R, Haščík P, Rovná K, Cubon J (2012) The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Arch Biol Sci 64:927–934CrossRefGoogle Scholar
  66. Kaškonienė V, Ruočkuvienė G, Kaškonas P, Akuneca I, Maruška A (2015) Chemometric analysis of bee pollen based on volatile and phenolic compound compositions and antioxidant properties. Food Anal Method 8:1150–1163CrossRefGoogle Scholar
  67. Ketkar SS, Rathore AS, Lohidasan S, Rao L, Paradkar AR, Mahadik KR (2014) Investigation of the nutraceutical potential of monofloral Indian mustard bee pollen. J Integr Med 12:379–389PubMedCrossRefGoogle Scholar
  68. Kinsella JE (1976) Functional properties of protein foods. Crit Rev Food Sci Nutr 1:219–229CrossRefGoogle Scholar
  69. Komosinska-Vassev K, Olczyk P, Kafmierczak J, Mencner L, Olczyk K (2015) Bee pollen: chemical composition and therapeutic application. Evid Based Complement Alternat Med 2015:1–6CrossRefGoogle Scholar
  70. Kostic AZ, Barac MB, Stanojevic SP, Milojkovic-Opsenica DM, Tesic ZL, Sikoparija B, Radisic P, Prentovic M (2015a) Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. Food Sci Technol 62:301–309Google Scholar
  71. Kostic AZ, Pešić MB, Mosić MD, Dojčinović BP, Natić MM, Trifković JD (2015b) Mineral content of bee pollen from Serbia. Arh Hig Rada Toksikol 66:251–258PubMedCrossRefGoogle Scholar
  72. Krell R (1996) Value-added Products from Beekeeping. FAO Agric Serv Bull 124:87–113Google Scholar
  73. Leblanc BW, Davis OK, Boue S, Delucca A, Deeby T (2009) Antioxidant activity of Sonoran Desert bee pollen. Food Chem 115:1299–1305CrossRefGoogle Scholar
  74. Leja M, Mareczek A, Wyzgolik G, Klepacz-Baniak J, Czekonska K (2007) Antioxidative properties of bee pollen in selected plant species. Food Chem 100:237–240CrossRefGoogle Scholar
  75. Liolios V, Tananaki V, Dimou M, Kanelis D, Goras G, Karazafiris E (2016) Ranking pollen from bee plants according to their protein contribution to honey bees. J Apic Res 54:582–592CrossRefGoogle Scholar
  76. Loper GM, Cohen AC (1987) Amino acid content of dandelion pollen, a honey bee (Hymenoptera: Apidae) nutritional evaluation. J Econ Entomol 80:14–17CrossRefGoogle Scholar
  77. Loper GM, Standifer LN, Thompson MJ, Gilliam M (1980) Biochemistry and microbiology of bee collected almond (Prumus dulcis) pollen and bee bread. I. Fatty acids, vitamins and minerals. Apidologie 11:63–73CrossRefGoogle Scholar
  78. Lopes J, Stanciu OG, Campos MG, Almaraz-Abarca N, Almeida-Muradian LB, Marghitas LA (2011) Bee pollen antioxidant activity – a review: achievements and further challenges. J Pharmacol 2:25–38Google Scholar
  79. Louveaux J, Maurizio M, Vorvohl G (1978) Methods of melissopalynology. Bee World 59:139–157CrossRefGoogle Scholar
  80. Luz CFP, Bacha-Junior GL, Fonseca RLS, Sousa PR (2010) Comparative pollen preferences by africanized honeybees Apis mellifera L. of two colonies in Pará de Minas, Minas Gerais, Brazil. Ann Acad Bras Ciênc 82:293–304CrossRefGoogle Scholar
  81. Lv H, Wang X, He Y, Wang H, Suo Y (2015) Identification and quantification of flavonoid aglycones in rape bee pollen from Qinghai-Tibetan Plateau by HPLC-DAD-APCI/MS. J Food Compost Anal 38:49–54Google Scholar
  82. Macrae R (1990) HPLC determination of vitamins. J Micronutr Anal 7:247–260Google Scholar
  83. Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World 82:60–75CrossRefGoogle Scholar
  84. Mărgăoan R, Mărghitas LA, Dezmirean DS, Mihai CM, Bobis O (2014) Bull UASVM Anim Sci Biotechnol 67:254–259Google Scholar
  85. Mărghitas LA, Stanciu OG, Dezmirean DS, Bobis O, Popescu O, Bogdanov S (2009) In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chem 115:878–883CrossRefGoogle Scholar
  86. Martins MCT (2010) Pólen apícola brasileiro: valor nutritivo e funcional, qualidade e contaminantes inorgânicos. http://www.bibliotecadigital.unicamp.br/document/?code=000477526. Accessed 26 Feb 2017
  87. Mejías E, Montenegro G (2012) The antioxidant activity of chilean honey and bee pollen produced in the Llaima volcano’s zones. J Food Qual 35:315–322CrossRefGoogle Scholar
  88. Melo ILP, Almeida-Muradian LB (2010) Stability of antioxidants vitamins in bee pollen samples. Quím Nova 33:514–518CrossRefGoogle Scholar
  89. Melo ILP, Almeida-Muradian LB (2011) Comparison of methodologies for moisture determination on dried bee pollen samples. Ciênc Tecnol Aliment 31:194–197CrossRefGoogle Scholar
  90. Melo ILP, Freitas AS, Barth OM, Almeida-Muradian LB (2009) Relação entre a composição nutricional e a origem floral de pólen apícola desidratado. Rev Inst Adolfo Lutz 68:346–353Google Scholar
  91. Menezes JDS, Maciel LF, Miranda MS, Druzian JI (2010) Compostos bioativos e potencial antioxidante do pólen apícola produzido por abelhas africanizadas (Apis mellifera L.) Rev Inst Adolfo Lutz 69:233–242Google Scholar
  92. Mizrahi A, Lensky Y (1997) Bee products: properties, applications and apitherapy. Springer, New York, NYCrossRefGoogle Scholar
  93. Modro AFH, Message D, Luz CFP, Meira-Neto JAA (2007) Composição e qualidade de pólen apícola coletado em Minas Gerais. Pesq Agropec Bras 42:1057–1065CrossRefGoogle Scholar
  94. Modro AFH, Silva IC, Luz CFP, Message D (2009) Analysis of pollen load based on color, physicochemical composition and botanical source. Ann Acad Bras Ciênc 81:281–285CrossRefGoogle Scholar
  95. Modro AFH, Message D, Luz CFP, Meira-Neto JAA (2011) Flora de importância polinífera para Apis mellifera (L.) na região de Viçosa, MG. Rev Árvore 35:1145–1153CrossRefGoogle Scholar
  96. Mohdaly AAA, Mahmoud AA, Roby MHH, Smetanska I, Ramadan MF (2015) Phenolic extract from propolis and bee pollen: composition, antioxidant and antibacterial activities. J Food Biochem 39:538–547CrossRefGoogle Scholar
  97. Morais M, Moreira L, Feás X, Estevinho LM (2011) Honeybee-collected pollen from five Portuguese Natural Parks: palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem Toxicol 49:1096–1101PubMedCrossRefGoogle Scholar
  98. Moreira L, Dias LG, Pereira JA, Estevinho L (2008) Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food Chem Toxicol 46:3482–3485PubMedCrossRefGoogle Scholar
  99. Morgano MA, Martins MCT, Rabonato LC, Milani RF, Yotsuyanagi K, Rodriguez-Amaya DB (2012) A comprehensive investigation of the mineral composition of brazilian bee pollen: geographic and seasonal variations and contribution to human diet. J Braz Chem Soc 23:727–736Google Scholar
  100. Muniategui S, Sancho MT, López-Hernández J, Simal-Lozano J (1990) Determination of carotenes from bee-collected pollen by high performance liquid chromatography. J Apicult Res 29:147–150CrossRefGoogle Scholar
  101. Negri G, Teixeira EW, Alves MLTMF, Moreti ACCC, Otsuk IP, Borguini RG, Salatino A (2011) Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil. J Agric Food Chem 59:5516–5522Google Scholar
  102. Nicolson SW, Human H (2013) Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie 44:144–152CrossRefGoogle Scholar
  103. Nielsen FH (2008) Is boron nutritionally relevant? Nutr Rev 66:183–191PubMedCrossRefGoogle Scholar
  104. NIH (2016) Selenium. https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/. Accessed 12 Dec 2016
  105. Nogueira C, Iglesias A, Feás X, Estevinho LM (2012) Commercial bee pollen with different geographical origins: a comprehensive approach. Int J Mol Sci 13:11173–11187PubMedPubMedCentralCrossRefGoogle Scholar
  106. Oliveira DM, Bastos DHM (2011) Biodisponibilidade de ácidos fenólicos. Quím Nova 34:1051–1056CrossRefGoogle Scholar
  107. Oliveira KCLS, Moriya M, Azedo RAB, Almeida-Muradian LB, Teixeira EW, Alves MLTMF (2009) Relationship between botanical origin and antioxidants vitamins of bee-collected pollen. Quím Nova 32:1099–1102CrossRefGoogle Scholar
  108. Panziera FB, Dorneles MM, Durgante PC, Silva VL (2011) Avaliação da ingestão de minerais antioxidantes em idosos. Rev Bras Geriatr Gerontol 14:49–58CrossRefGoogle Scholar
  109. Pascoal A, Rodrigues S, Teixeira A, Féas X, Estevinho LM (2014) Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem Toxicol 63:233–239PubMedCrossRefGoogle Scholar
  110. Pereira TC, Hessel G (2009) Deficiência de zinco em crianças e adolescentes com doenças hepáticas crônicas. Rev Paul Pediatr 27:322–328CrossRefGoogle Scholar
  111. Pereira FM, Lopes MTR, Camargo RCR, Vilela SLO (2013) Produção de mel. http://www.sistemasdeproducao.cnptia.embrapa.br. Accessed 2 Mar 2014
  112. Perini JÂL, Stevanato FB, Sargi SC, Visentainer JEL, Dalalio MMO, Matshushita MS (2010) Ácidos graxos poli-insaturados n-3 e n-6: metabolismo em mamíferos e resposta imune. Rev Nutr 23:1075–1086CrossRefGoogle Scholar
  113. Polesello S, Rizzolo A (1990) Application of HPLC to the determination of water soluble vitamins in foods: 2 (a review 1985–1989). J Micronutr Anal 8:105–158Google Scholar
  114. Rebiai A, Lanez T (2012) Chemical composition and antioxidant activity of Apis mellifera bee pollen from northwest Algeria. J Fundam Appl Sci 4:155–163CrossRefGoogle Scholar
  115. Rosanoff A, Weaver CM, Rude RK (2012) Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev 70:153–164PubMedCrossRefGoogle Scholar
  116. Russia (1990) Flower pollen (beebread) – specifications. http://gostexpert.ru/data/files/28887-90/9ab039cee5dcc6668687b174db81e5f8.pdf. Accessed 12 Mar 2015
  117. Saavedra KIC, Rojas CI, Delgado GEP (2013) Características polínicas y composición química del polen apícola colectado en Cayaltí (Lambayeque – Perú). Rev Chil Nutr 40:71–78CrossRefGoogle Scholar
  118. Sánchez ET (2004) Polen: producción envasado y comercialización. Diproansa, MorelosGoogle Scholar
  119. Sattler JAG, Melo ILP, Granato D, Araújo E, Silva-Freitas A, Barth OM (2015) Impact of origin on bioactive compounds and nutritional composition of bee pollen from southern Brazil. Food Res Int 77:82–91CrossRefGoogle Scholar
  120. Sattler JAG, De-Melo AAM, Nascimento KS, Melo ILP, Mancini-Filho J, Sattler A (2016) Essential minerals and inorganic contaminants (barium, cadmium, lithium, lead and vanadium) in dried bee pollen produced in Rio Grande do Sul State, Brazil. Food Sci Technol 36:505–509Google Scholar
  121. Schmidt JO, Buchmann SL (1992) Other products of hive. In: Graham JM, Amgrose JT, Langstroth LL (eds) The hive and the honey bee: a new book on beekeeping which continues the tradition of “langstroth on the hive and the honeybee”. Hamilton, Dadant and Sons, pp 928–977Google Scholar
  122. Shady HMA, Mohamed WF, Sayed-Ahmed EF, Amer SA (2016) A comparative study on propolis and pollen extracts: chemical profile analysis, antioxidant and anticancer activity. Int J Curr Microbiol Appl Sci 5:397–414Google Scholar
  123. Serra-Bonvehí J, Escolà-Jordà R (1997) Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. J Agric Food Chem 45:725–732CrossRefGoogle Scholar
  124. Shawer MB, Ali SM, Abdellatif MA, El-Refai AA (1987) Biochemical studies of bee-collected pollen in Egypt 2. Fatty acids and non-saponifiables. J Apic Res 26:133–136CrossRefGoogle Scholar
  125. Silveira TA (2012) Caracterização sazonal do pólen apícola quanto à origem botânica, aspectos físico-químicos e elementos traços como bioindicadora de poluição ambiental. http://www.teses.usp.br/teses/disponiveis/11/11146/tde-20032012-090016/pt-br.php. Accessed 26 Feb 2017
  126. Simões CMO, Guerra MP, Schenkel EP, Zannin M, Mentz LA, Bordignon SAL (2004) Farmacognosia: da planta ao medicamento, 5th edn. UFRGS, Porto AlegreGoogle Scholar
  127. Somerville DC, Nicol HI (2002) Mineral content of honeybee-collected pollen from southern New South Wales. Aust J Exp Agric 42:1131–1136CrossRefGoogle Scholar
  128. Souza BR (2014) Quantificação das vitaminas do complexo B (B1, B2) e vitâmeros das vitaminas B3 e B6 em amostras de pólen apícola desidratado provenientes da Região Sul do Brasil. http://www.teses.usp.br/teses/disponiveis/9/9131/tde-27052015-141055/pt-br.php. Accessed 26 Feb 2017
  129. Stanley R, Linskens H (1974) Pollen: biology biochemistry management. Springer, BerlinCrossRefGoogle Scholar
  130. Sunde RA (2012) Selenium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR. Modern nutrition in health and disease. 11th edn. Philadelphia, PA: Lippincott Williams & Wilkins; p. 225–237.Google Scholar
  131. Swiss (2005) Ordinance of the DFI on foodstuffs of animal origin: chapter 11 – honey, royal jelly and pollen. https://www.admin.ch/opc/fr/classified-compilation/20050164/index.html. Accessed 12 Mar 2015
  132. Szczesna T (2006a) Long-chain fatty acids composition of honeybee-collected pollen. J Apic Sci 50:81–90Google Scholar
  133. Szczesna T (2006b) Protein content and amino acid composition of bee-collected pollen from selected botanical origins. J Apic Sci 50:81–90Google Scholar
  134. Szczesna T (2007) Concentration of selected elements in honeybee-collected pollen. J Apic Sci 51:5–13Google Scholar
  135. Szczesna T, Rybak-Chmielewska H (1998) Some properties of honey bee collected pollen. Pszczelnicze Zeszyty Naukowe 42:79–80Google Scholar
  136. Szczesna T, Rybak-Chimielewska H, Bornus L (1991) Effect of storage on variation of contents vitamin C and A in pollen collected bees. Apiacta 2:1–3Google Scholar
  137. Taha EA (2015) Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanical origin. J Apic Sci 59:75–81Google Scholar
  138. Tavdidishvili D, Khutsidze T, Pkhakadze M, Vanidze M, Kalandia A (2014) Flavonoids in georgian bee bread and bee pollen. J Chem Chem Eng 8:676–681Google Scholar
  139. Ulusoy E, Kolayli S (2014) Phenolic composition and antioxidant properties of anzer bee pollen. J Food Biochem 38:73–82CrossRefGoogle Scholar
  140. USDA (1998) Vegetarians, watch your zinc! https://agresearchmag.ars.usda.gov/1998/mar/zinc/. Accessed 12 Mar 2015
  141. USDA (2011) Dri dietary reference intakes: calcium vitamin D. https://www.nap.edu/read/13050/chapter/1. Accessed 12 Mar 2015
  142. USDA (2015) Nutrient vitamins and minerals. https://www.ams.usda.gov/sites/default/files/media/Nutrient%20Vitamins%20TR%202015.pdf. Accessed 12 Dec 2016
  143. WHO World Health Organization (2012a) Guideline: potassium intake for adults and children. World Health Organization, GenevaGoogle Scholar
  144. WHO World Health Organization (2012b) Guideline: sodium intake for adults and children. World Health Organization, GenevaGoogle Scholar
  145. WHO World Health Organization (2015). Micronutrient deficiencies: iron deficiency anaemia. http://www.who.int/nutrition/topics/ida/en/. Accessed 12 Dec 2016
  146. Xu X, Sun L, Dong J, Zhang H (2009) Breaking the cells of rape bee pollen and consecutive extraction of functional oil with supercritical carbon dioxide. Innov Food Sci Emerg Technol 10:42–46CrossRefGoogle Scholar
  147. Xu X, Dong J, Mu X, Sun L (2011) Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen. Food and Bioprod Process 89:47–52CrossRefGoogle Scholar
  148. Yang J, Guo J, Yuan J (2008) In vitro antioxidant properties of rutin. Food Sci Technol 41:1060–1066Google Scholar
  149. Yang K, Wu D, Ye X, Liu D, Chen J, Sun P (2013) Characterization of chemical composition of bee pollen in China. J Agric Food Chem 61:708–718PubMedCrossRefGoogle Scholar
  150. You J, Liu L, Zhao W, Zhao X, Suo Y, Wang H (2007) Study of a new derivatizing reagent that improves the analysis of amino acids by HPLC with fluorescence detection: application to hydrolyzed rape bee pollen. Anal Bioanal Chem 387:2705–2718PubMedCrossRefGoogle Scholar
  151. Youssef AM, Farag RS, Ewies MA, El-Shakaa SMA (1978) Chemical studies on pollen collected by honeybees in Giza region, Egypt. J Apic Res 17:110–113CrossRefGoogle Scholar
  152. Zafra AO (1979) El polen y su salud. Puebla, Pue, FlorimielGoogle Scholar
  153. Zhou J, Qi Y, Ritho J, Zhang Y, Zheng X, Wu L (2015) Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC-MS/MS. Food Cont 57:54–62CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Adriane Alexandre Machado De-Melo
    • 1
    • 2
    Email author
  • Ligia Bicudo de Almeida-Muradian
    • 1
  1. 1.Department of Food and Experimental Nutrition, Pharmaceutical Sciences SchoolUniversity of São PauloSão PauloBrazil
  2. 2.Laboratório de Análise de Alimentos da Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil

Personalised recommendations