Skip to main content

Conformal Transforms and Doob’s h-Processes on Heisenberg Groups

  • Conference paper
  • First Online:
Stochastic Analysis and Related Topics

Part of the book series: Progress in Probability ((PRPR,volume 72))

Abstract

We study the stochastic processes that are images of Brownian motions on Heisenberg group H 2n+1 under conformal maps. In particular, we obtain that Cayley transform maps Brownian paths in H 2n+1 to a time changed Brownian motion on CR sphere \(\mathbb{S}^{2n+1}\) conditioned to be at its south pole at a random time. We also obtain that the inversion of Brownian motion on H 2n+1 started from x ≠ 0, is up to time change, a Brownian bridge on H 2n+1 conditioned to be at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Baudoin, M. Bonnefont, The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Z. 263, 647–672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Baudoin, J. Wang, The subelliptic heat kernel on the CR sphere. Math. Z. 275(1–2), 135–150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Baudoin, J. Wang, Stochastic areas, winding numbers and Hopf fibrations. Probab. Theory Relat. Fields (2016). https://doi.org/10.1007/s00440-016-0745-x

    Google Scholar 

  4. R. Beals, B. Gaveau, P.C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79(7), 633–689 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. T.K. Carne, Brownian motion and stereographic projection. Ann. Inst. Henri Poincaré Probab. Stat. Sect. B 21(2), 187–196 (1985)

    MathSciNet  MATH  Google Scholar 

  6. S. Dragomir, G. Tomassini, Differential Geometry and Analysis on CR Manifolds, vol. 246 (Birkhäuser, Boston, 2006)

    MATH  Google Scholar 

  7. B. Gaveau, Principe de moindre action, propagation de la chaleur et estiméees sous elliptiques sur certains groupes nilpotents. Acta Math. 139(1), 95–153 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Geller, The Laplacian and the Kohn Laplacian for the sphere. J. Differ. Geom. 15, 417–435 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Korányi, Kelvin transforms and harmonic polynomials on the Heisenberg group. J. Funct. Anal. 49(2), 177–185 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Schwartz, Le mouvement brownien sur \(\mathbb{R}^{N}\), en tant que semi-martingale dans S N . Ann. Inst. Henri Poincaré Probab. Stat. 21(1), 15–25 (1985)

    MathSciNet  MATH  Google Scholar 

  11. M. Yor, A prtopos de l’inverse du mouvement brownien dans \(\mathbb{R}^{n}\,(n \geq 3)\). Ann. Inst. Henri Poincaré Probab. Stat. 21(1), 27–38 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, J. (2017). Conformal Transforms and Doob’s h-Processes on Heisenberg Groups. In: Baudoin, F., Peterson, J. (eds) Stochastic Analysis and Related Topics. Progress in Probability, vol 72. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59671-6_8

Download citation

Publish with us

Policies and ethics