Critical Behavior of Mean-Field XY and Related Models

  • Kay Kirkpatrick
  • Tayyab Nawaz
Conference paper
Part of the Progress in Probability book series (PRPR, volume 72)


We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large deviations and Stein’s method, in particular, Cramér and Sanov-type results, limit theorems with rates of convergence, and phase transition behavior for these models.


Mean-field Free energy Density function Gibbs measure 



Both authors partially supported by NSF CAREER award DMS-1254791, and NSF grant 0932078 000 while in residence at MSRI during Fall 2015.


  1. 1.
    M. Aizenman, B. Simon, A comparison of plane rotor and Ising models. Phys. Lett. A 76 (1980). doi:10.1016/0375-9601(80)90493-4Google Scholar
  2. 2.
    D.E. Amos, Computation of modified Bessel functions and their ratios. Math. Comput. 28(125), 239–251 (1974)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    P.W. Anderson, Random-phase approximation in the theory of superconductivity. Phys. Rev. 112(6), 1900–1915 (1958)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S.G. Brush, History of the Lenz-Ising Model. Rev. Mod. Phys. 39, 883–893 (1967)CrossRefGoogle Scholar
  5. 5.
    S. Chatterjee, Q.-M. Shao, Nonnormal approximation by Stein’s method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab. 21(2), 464–483 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley-Interscience [Wiley], Hoboken, 2006)Google Scholar
  7. 7.
    R.S. Ellis, C.M. Newman, Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44(2), 117–139 (1978)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    R.S. Ellis, C.M. Newman, The statistics of Curie-Weiss models. J. Stat. Phys. 19(2), 149–161 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R.S. Ellis, C.M. Newman, J.S. Rosen, Limit theorems for sums of dependent random variables occurring in statistical mechanics. II. Conditioning, multiple phases, and metastability. Z. Wahrsch. Verw. Gebiete 51(2), 153 (1980)Google Scholar
  10. 10.
    R.S. Ellis, K. Haven, B. Turkington, Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101(5–6), 999–1064 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    E. Ising, Contribution to the theory of ferromagnetism. Z. Phys. 31, 253–258 (1925)CrossRefGoogle Scholar
  12. 12.
    K. Kirkpatrick, E. Meckes, Asymptotics of the mean-field Heisenberg model. J. Stat. Phys. 152(1), 54–92 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    K. Kirkpatrick, T. Nawaz, Asymptotics of mean-field O(N) models. J. Stat. Phys. 165(6), 1114–1140 (2016) 165(6), 1114–1140 (2016)Google Scholar
  14. 14.
    J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-352 dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973)CrossRefGoogle Scholar
  15. 15.
    E. Meckes, On Stein’s method for multivariate normal approximation, in High Dimensional Probability V: The Luminy Volume (Institute of Mathematical Statistics, Beachwood, 2009)MATHGoogle Scholar
  16. 16.
    N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1307 (1966)CrossRefGoogle Scholar
  17. 17.
    M.A. Moore, Additional evidence for a phase transition in the plane-rotator and classical Heisenberg models for two-dimensional lattices. Phys. Rev. Lett. 23, 861–863 (1969)CrossRefGoogle Scholar
  18. 18.
    H.E. Stanley, Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20, 589–592 (1968)CrossRefGoogle Scholar
  19. 19.
    C. Stein, Approximate Computation of Expectations. Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 7 (Institute of Mathematical Statistics, Hayward, 1986)Google Scholar
  20. 20.
    C. Stein, P. Diaconis, S. Holmes, G. Reinert, Use of exchangeable pairs in the analysis of simulations, in Stein’s Method: Expository Lectures and Applications. IMS Lecture Notes-Monograph Series, vol. 46 (Institute of Mathematical Statistics, Beachwood, 2004), pp. 1–26Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of MathematicsCOMSATS Institute of Information and TechnologyIslamabadPakistan

Personalised recommendations