Advertisement

Incorporating More Scaled Differences to Differential Evolution

  • Miguel Cárdenas-MontesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)

Abstract

Differential Evolution is an evolutionary algorithm composed of vectors and based on the application of scaled differences of two vectors over a third one, being all of them different. The variants of this algorithm propose different types of vectors for the scaled difference, and different number of scaled differences, to alter differently-selected vectors. The successful track of Differential Evolution has propitiated numerous variants. These variants use a limited number of vectors for forming the scaled differences and, in general, only one vector for receiving these differences. In this work, new variants with scaled differences using all the population vectors are proposed. These variants are confronted to a wide set of fitness functions and to a set of Differential Evolution variants.

Keywords

Differential evolution Performance Optimization 

Notes

Acknowledgement

The research leading to these results has received funding by the Spanish Ministry of Economy and Competitiveness (MINECO) for funding support through the grant FPA2013-47804-C2-1-R, FPA2016-80994-C2-1-R, and “Unidad de Excelencia María de Maeztu”: CIEMAT - FÍSICA DE PARTÍCULAS through the grant MDM-2015-0509.

References

  1. 1.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Zamuda, A., Brest, J.: Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015)CrossRefGoogle Scholar
  3. 3.
    Peñuñuri-Anguiano, F.R., Cab-Cauich, C.A., Carvente-Muñoz, O., Zambrano-Arjona, M.A., Tapia-González, J.A.: A study of the classical differential evolution control parameters. Swarm Evol. Comput. 26, 86–96 (2016)CrossRefGoogle Scholar
  4. 4.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Mezura-Montes, E., Velazquez-Reyes, J., Coello, C.A.C.: A comparative study of differential evolution variants for global optimization. In: GECCO, pp. 485–492 (2006)Google Scholar
  6. 6.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  7. 7.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1), 61–106 (2010)CrossRefGoogle Scholar
  8. 8.
    Rönkkönen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, Edinburgh, UK, 2–4 , pp. 506–513. IEEE (2005)., September 2005Google Scholar
  9. 9.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution a Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)zbMATHGoogle Scholar
  10. 10.
    Lu, X., Tang, K., Sendhoff, B., Yao, X.: A new self-adaptation scheme for differential evolution. Neurocomput. 146(C), 2–16 (2014)Google Scholar
  11. 11.
    Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for faster global search. In: Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, 25–29 , pp. 991–998. ACM (2005)., June 2005Google Scholar
  12. 12.
    Lu, X., Tang, K., Sendhoff, B., Yao, X.: A new self-adaptation scheme for differential evolution. Neurocomputing 146, 2–16 (2014)CrossRefGoogle Scholar
  13. 13.
    Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the cec’2010 special session and competition on large-scale global optimization. Technical report, Nature Inspired Computation and Applications Laboratory (NICAL), School of Computer Science and Technology, University of Science and Technology of China (USTC) (2009)Google Scholar
  14. 14.
    Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark functions for the CEC 2008 special session and competition on large scale global optimization. Technical report, Nature Inspired Computation and Applications Laboratory, USTC, China (2007)Google Scholar
  15. 15.
    Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Xie, W., Zou, X.: A binary differential evolution algorithm learning from explored solutions. Neurocomputing 149, 1038–1047 (2015)CrossRefGoogle Scholar
  17. 17.
    Feoktistov, V., Janaqi, S.: Generalization of the strategies in differential evolution. In: 18th International Parallel and Distributed Processing Symposium (IPDPS 2004), CD-ROM/Abstracts Proceedings, Santa Fe, New Mexico, USA, 26–30. IEEE Computer Society (2004)., April 2004Google Scholar
  18. 18.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  19. 19.
    Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, Edinburgh, UK, 2–4 , pp. 1785–1791. IEEE (2005)., September 2005Google Scholar
  20. 20.
    Gämperle, R., Müller, S.D., Koumoutsakos, P.: A parameter study for differential evolution. In: WSEAS International Conference on Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, Press, pp. 293–298 (2002)Google Scholar
  21. 21.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. Trans. Evol. Comp. 15(1), 55–66 (2011)CrossRefGoogle Scholar
  22. 22.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centro de Investigaciones Energéticas Medioambientales y TecnológicasMadridSpain

Personalised recommendations