A Personality-Based Recommender System for Semantic Searches in Vehicles Sales Portals

  • Fábio A. P. Paiva
  • José A. F. Costa
  • Cláudio R. M. Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)


This work proposes a personality-based recommender system to implement semantic searches on Internet Vehicles Sales Portals. The system is based on a typical recommender system architecture that has been extended to combine a hybrid recommendation approach with a machine learning classifier technique (k-NN). It proposes a combination of the Five Factor Model (Big Five Model) with a correlation between car fronts and power and sociability perceptions. A prototype was implemented to answer the semantic searches considering personality-based user’s profiles and a set of Brazilian cars. After each search, a questionnaire was provided for the users to verify how successful the recommendations were for them. The prototype received web searches during a period of 15 days. The final report showed that 77.67% of the users accepted the personality-based recommendations, what indicates that the proposed approach could be promising to improve the quality of the recommendations on the user’s point of view.


Recommender system Personality traits Semantic searches 


  1. 1.
    McDonald, M.: Internet reshapes how dealers sell used cars (2012). Accessed 05 Feb 2014
  2. 2.
    Grimes, S.: Breakthrough analysis: two + nine types of semantic search (2010). Accessed 09 Feb 2017
  3. 3.
    Zhuhadar, L., Nasraoui, O.: A hybrid recommender system guided by semantic user profiles for search in the e-learning domain. J. Emerg. Technol. Web Intell. 2(4), 272–281 (2010)Google Scholar
  4. 4.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72079-9_12 CrossRefGoogle Scholar
  5. 5.
    Manchale, P., Bilal, M.: Curated content based recommender system. Int. J. Comput. Sci. Eng. 2(4), 66–72 (2013)Google Scholar
  6. 6.
    Hariri, N., Castro-Herrera, C., Mirakhorli, M., Cleland-Huang, J., Mobasher, B.: Supporting domain analysis through mining and recommending features from online product listings. IEEE Trans. Softw. Eng. 39(12), 1736–1752 (2013)CrossRefGoogle Scholar
  7. 7.
    Wasid, M., Kant, V.: A particle swarm approach to collaborative filtering based recommender systems through fuzzy features. Procedia Comput. Sci. 54, 440–448 (2015)CrossRefGoogle Scholar
  8. 8.
    Miyahara, K., Pazzani, M.J.: Improvement of collaborative filtering with the simple Bayesian classifier. Inf. Process. Soc. Jpn. 43(11), 3429–3437 (2002)Google Scholar
  9. 9.
    Pham, M.C., Cao, Y., Klamma, R., Jarke, M.: A clustering approach for collaborative filtering recommendation using social network analysis. J. UCS 17(4), 583–604 (2011)Google Scholar
  10. 10.
    Vassiliou, C., Stamoulis, D., Martakos, D., Athanassopoulos, S.: A recommender system framework combining neural networks & collaborative filtering. In: Proceedings of the 5th WSEAS International Conference on Instrumentation, Measurement, Circuits and Systems, pp. 285–290 (2006)Google Scholar
  11. 11.
    Matthews, G., Deary, I.J., Whiteman, M.C.: Personality Traits, 2nd edn. University Press, Cambridge (2003)CrossRefGoogle Scholar
  12. 12.
    Windhager, S., Slice, D., Schaefer, K., Oberzaucher, E., Thorstensen, T., Grammer, K.: Face to face: the perception of automotive designs. Human Nat. 19(4), 331–346 (2008)CrossRefGoogle Scholar
  13. 13.
    Windhager, S., Booksteina, F.L., Grammera, K., Oberzauchera, E., Saidd, H., Slicee, D.E., Thorstensenb, T., Schaefera, K.: Cars have their own faces: cross-cultural ratings of car shapes in biological (stereotypical) terms. Evol. Hum. Behav. 33(2), 109–120 (2012)CrossRefGoogle Scholar
  14. 14.
    Nunes, M.A.S., Hu, R.: Personality-based recommender systems: an overview. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys 2012, pp. 5–6. ACM, New York (2012)Google Scholar
  15. 15.
    Tintarev, N., Dennis, M., Masthoff, J.: Adapting recommendation diversity to openness to experience: a study of human behaviour. In: Proceedings of User Modeling, Adaptation, and Personalization, pp. 190–202 (2013)Google Scholar
  16. 16.
    Ericson, K., Pallickara, S.: On the performance of distributed clustering algorithms in file and streaming processing systems. In: Fourth IEEE International Conference on Utility and Cloud Computing (UCC 2011), pp. 33–40. IEEE (2011)Google Scholar
  17. 17.
    Ericson, K., Pallickara, S.: On the performance of high dimensional data clustering and classification algorithms. Future Gener. Comput. Syst. 29(4), 1024–1034 (2013)CrossRefGoogle Scholar
  18. 18.
    Panda, M., Patra, M.R., Dehuri, S.: Building recommender systems for network intrusion detection using intelligent decision technologies. In: Intelligent Techniques in Recommendation Systems: Contextual Advancements and New Methods, pp. 49–62. IGI Global (2015)Google Scholar
  19. 19.
    Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kelley, P.G., Hankes Drielsma, P., Sadeh, N., Cranor, L.F.: User-controllable learning of security and privacy policies. In: Proceedings of the 1st ACM Workshop on AISec, pp. 11–18. ACM (2008)Google Scholar
  21. 21.
    Marović, M., Mihoković, M., Mikša, M., Pribil, S., Tus, A.: Automatic movie ratings prediction using machine learning. In: MIPRO: Proceedings of the 34th International Convention 2011, pp. 1640–1645. IEEE (2011)Google Scholar
  22. 22.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009)Google Scholar
  23. 23.
    Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. arXiv:1511.05263 (2015)
  24. 24.
    Roshchina, A., Cardiff, J., Rosso, P.: TWIN: personality-based intelligent recommender system. J. Intell. Fuzzy Syst. 28(5), 2059–2071 (2015)CrossRefGoogle Scholar
  25. 25.
    Wu , W., Chen, L.: Implicit acquisition of user personality for augmenting movie recommendations. In: Proceedings of User Modeling, Adaptation and Personalization, Dublin, Ireland, pp. 302–314 (2015)Google Scholar
  26. 26.
    Gosling, S.D., Rentfrow, P.J., Swann, W.B.: A very brief measure of the big-five personality domains. J. Res. Pers. 37, 504–528 (2003)CrossRefGoogle Scholar
  27. 27.
    Paiva, F.A.P., Costa, J.A.F., Silva, C.R.M.: A hierarchical architecture for ontology-based recommender systems. In: Proceedings of the Computational Intelligence and 11th Brazilian Congress on Computational Intelligence (2013)Google Scholar
  28. 28.
    Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the big five inventory in English and German. J. Res. Pers. 41(1), 203–212 (2007)CrossRefGoogle Scholar
  29. 29.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM, New York (2005)Google Scholar
  30. 30.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  31. 31.
    Swearingen, K., Sinha, R.: Beyond algorithms: an HCI perspective on recommender systems. In: Proceedings of Workshop on Recommender Systems, vol. 13, No. 5–6, pp. 393–408 (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fábio A. P. Paiva
    • 1
  • José A. F. Costa
    • 2
  • Cláudio R. M. Silva
    • 2
  1. 1.Federal Institute of Rio Grande do Norte, IFRNParnamirimBrazil
  2. 2.Federal University of Rio Grande do Norte, UFRNNatalBrazil

Personalised recommendations