Advertisement

Single and Blended Models for Day-Ahead Photovoltaic Power Forecasting

  • Javier Antonanzas
  • Ruben Urraca
  • Alpha Pernía-Espinoza
  • Alvaro Aldama
  • Luis Alfredo Fernández-Jiménez
  • Francisco Javier Martínez-de-PisónEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)

Abstract

Solar power forecasts are gaining continuous importance as the penetration of solar energy into the grid rises. The natural variability of the solar resource, joined to the difficulties of cloud movement modeling, endow solar power forecasts with a certain level of uncertainty. Important efforts have been carried out in the field to reduce as much as possible the errors. Various approaches have been followed, being the predominant nowadays the use of statistical techniques to model production.

In this study, we have performed a comparison study between two extensively used statistical techniques, support vector regression (SVR) machines and random forests, and two other techniques that have been scarcely applied to solar forecasting, deep neural networks and extreme gradient boosting machines. Best results were obtained with the SVR technique, showing a nRMSE of 22.49%. To complete the assessment, a weighted blended model consisting on an average weighted combination of individual predictions was created. This blended model outperformed all the models studied, with a nRMSE of 22.24%.

Keywords

Solar power forecasting Extreme gradient boosting Deep neural networks Weighted blended model 

Notes

Acknowledgments

J. Antonanzas and R. Urraca would like to acknowledge the fellowship FPI-UR-2014 granted by the University of La Rioja. This work used the Beronia cluster (Universidad de La Rioja), which is supported by FEDER-MINECO grant number UNLR-094E-2C-225.

References

  1. 1.
    Almeida, M.P., Perpinan, O., Narvarte, L.: PV power forecast using a nonparametric PV model. Solar Energy 115, 354–368 (2015)CrossRefGoogle Scholar
  2. 2.
    Almonacid, F., Perez-Higueras, P.J., Fernendez, E.F., Hontoria, L.: A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Convers. Manage. 85, 389–398 (2014). http://dx.doi.org/10.1016/j.enconman.2014.05.090 CrossRefGoogle Scholar
  3. 3.
    Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F.J., Antonanzas-Torres, F.: Review of photovoltaic power forecasting. Solar Energy 136, 78–111 (2016). http://dx.doi.org/10.1016/j.solener.2016.06.069 CrossRefGoogle Scholar
  4. 4.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, T., He, T.: XGBoost: eXtreme gradient boosting. R package version 0.4–2 (2015)Google Scholar
  7. 7.
    Da Silva Fonseca Junior, J.G., Oozeki, T., Ohtake, H., Shimose, K., Takashima, T., Ogimoto, K.: Regional forecasts and smoothing effect of photovoltaic power generation in Japan: an approach with principal component analysis. Renew. Energy 68, 403–413 (2014). http://dx.doi.org/10.1016/j.renene.2014.02.018 CrossRefGoogle Scholar
  8. 8.
    Hossain, R., Maung, A., Oo, T., Ali, A.B.M.S.: Hybrid prediction method for solar power using different computational intelligence algorithms. Smart Grid. Renew. Energy 4, 76–87 (2013)Google Scholar
  9. 9.
    Li, Y., Su, Y., Shu, L.: An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renew. Energy 66, 78–89 (2014). http://dx.doi.org/10.1016/j.renene.2013.11.067 CrossRefGoogle Scholar
  10. 10.
    Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Autom. Remote Control 24, 774–780 (1963)Google Scholar
  11. 11.
    Wang, F., Zhen, Z., Mi, Z., Sun, H., Su, S., Yang, G.: Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting. Energy Buildings 86, 427–438 (2015). http://dx.doi.org/10.1016/j.enbuild.2014.10.002 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Javier Antonanzas
    • 1
    • 3
  • Ruben Urraca
    • 1
    • 3
  • Alpha Pernía-Espinoza
    • 1
    • 3
  • Alvaro Aldama
    • 1
    • 3
  • Luis Alfredo Fernández-Jiménez
    • 2
  • Francisco Javier Martínez-de-Pisón
    • 1
    • 3
    Email author
  1. 1.EDMANS GroupUniversity of La RiojaLogroñoSpain
  2. 2.Department of Electrical EngineeringUniversity of La RiojaLogroñoSpain
  3. 3.Department of Mechanical EngineeringUniversity of La RiojaLogroñoSpain

Personalised recommendations