Advertisement

Simulation of a Directional Process by Means of an Anisotropic Buffer Operator

  • M. Dolores MuñozEmail author
  • María N. Moreno García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)

Abstract

Geographic information systems have usually implemented a module that allows areas to be delimited by an isotropic buffer. In this kind of buffer, the generating polygon is a circle, which implies a constant distance from the border of the buffer to the object. The simulation of anisotropic processes, in contrast, requires the use of generating polygons which determine directionally non-uniform areas of influence. In this paper, a review of how some of the commercial GISs address the problem of anisotropy is presented, concluding that commercial GIS have modules that allow to perform spatial analysis. However, the anisotropic analysis tools are not sufficiently developed, being restricted to implementations based on the study of distance costs. In addition, we proposed a method to check the anisotropy and the creation of a generator oval that allows to delimit zones of influence that represent phenomena with anisotropic characteristics.

Keywords

Anisotropic image analysis Geographic Information Systems Anisotropic buffer Visualization 

References

  1. 1.
    Bailey, T.C., Gatrell, A.C.: A Review of: Interactive Spatial Data Analysis. Longman, Harlow (2007)Google Scholar
  2. 2.
    Black, M., Ebener, S., Najera, P., Viaurre, M., El Morjani, Z.: Using GIS to measure physical accessibility to health care. In: Proceedings of the International Health Users Conference (2004)Google Scholar
  3. 3.
    Boost, B.: Boost C++ Libraries (2015). http://www.boost.org. Accessed 17 Feb 2017
  4. 4.
    Casciola, G., Montefuscoa, L.B., Morigi, S.: The regularizing properties of anisotropic radial basis functions. Appl. Math. Comput. 190(2), 1050–1062 (2007)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Chou, Y.H.: Exploring Spatial Analysis in GIS. Onward Press, Santa Fe (1997)Google Scholar
  6. 6.
    Cressie N.: Statistics for Spatial Data. Wiley, New York (1993)Google Scholar
  7. 7.
    Esri. The Gis software leader (2015). http://www.esri.com. Accessed 17 Feb 2017
  8. 8.
    Getis A. Homogeneity and Proximal Databases in Spatial Analysis and GIS. Taylor & Francis, London (1994)Google Scholar
  9. 9.
    Grass GIS (2015). https://grass.osgeo.org/documentation/manuals/. Accessed 17 Feb 2017
  10. 10.
    Mardia, K., Jupp, P.: Directional Statistics. Wiley, New York (1999)Google Scholar
  11. 11.
    Martinez, J.: Introducción a la lógica virtual (2008) (Spanish). https://composicionarqdatos.files.wordpress.com/2008/09/introduccion-a-la-logica-visual_juan-martinez-val.pdf. Accessed 17 Feb 2017
  12. 12.
    Mata, A., Muñoz, M.D., Corchado, E., Corchado, J.M.: Isotropic Image Analysis for improving CBR forecasting. J. Math. Imaging Vis. 42, 212–224 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Molina, A., Feito, F.R.: A method for testing anisotropy and quantifying its direction in digital images. Comput. Graph. 26, 771–784 (2002)CrossRefGoogle Scholar
  14. 14.
    Molina, A., Muñoz, M.D.: Simulation and visualization of anisotropic expansion phenomena. In: 5th Agile Conference on Geographical Information Science (2002)Google Scholar
  15. 15.
    Muñoz, M.D., Mata, A., Corchado, E., Corchado, J.M.: (OBIS) isotropic image analysis for improving a predicting agent based systems. Expert Syst. Appl. 40, 5011–5020 (2013)CrossRefGoogle Scholar
  16. 16.
    Ronald, J.: Idrisi Kilimanjaro Guía para SIG y Procesamiento de Imágenes. Clack Labs, Córdoba (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Dolores Muñoz
    • 1
    Email author
  • María N. Moreno García
    • 1
  1. 1.Department of Computing and AutomaticUniversity of SalamancaSalamancaSpain

Personalised recommendations