Advertisement

FRB-Dialog: A Toolkit for Automatic Learning of Fuzzy-Rule Based (FRB) Dialog Managers

  • David GriolEmail author
  • Aracel Sanchis de Miguel
  • José Manuel Molina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)

Abstract

This paper describes a toolkit designed to automatically develop dialog managers for spoken dialog system based on evolving Fuzzy-rule-based (FRB) classifiers. The FRB-dialog toolkit allows to develop dialog managers selecting the next system action by considering a set of dynamic rules that are automatically obtained by means of the application of the FRB classification process. Our approach bridges the gap between the academic and industrial perspectives for developing dialog systems, taking into account the data supplied by the user throughout the complete dialog history without causing scalability problems, and also considering confidence measures provided by the recognition and understanding modules.

Keywords

Conversational interfaces Spoken dialog management Evolving classifiers Fuzzy-rule based systems Human-machine interaction 

Notes

Acknowledgements

This work was supported in part by Projects TRA2015-63708-R and TRA2016-78886-C3-1-R.

References

  1. 1.
    Angelov, P., Zhou, X.: Evolving fuzzy classifier for novelty detection and landmark recognition by mobile robots. In: Nedjah, N., dos Santos Coelho, L., de Macedo Mourelle, L. (eds.) Mobile Robots: The Evolutionary Approach. SCI, vol. 50, pp. 89–118. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Angelov, P., Zhou, X.: Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans. Fuzzy Syst. 16(6), 1462–1475 (2008)CrossRefGoogle Scholar
  3. 3.
    Baruah, R., Angelov, P.: Evolving social network analysis: a case study on mobile phone data. In: Proceedings of EAIS 2012, pp. 114–120 (2012)Google Scholar
  4. 4.
    Cuayáhuitl, H., Renals, S., Lemon, O., Shimodaira, H.: Human-computer dialogue simulation using hidden markov models. In: Proceedings of ASRU 2005, pp. 290–295 (2005)Google Scholar
  5. 5.
    Griol, D., Callejas, Z., López-Cózar, R., Riccardi, G.: A domain-independent statistical methodology for dialog management in spoken dialog systems. Comput. Speech Lang. 28(3), 743–768 (2014)CrossRefGoogle Scholar
  6. 6.
    Griol, D., Carbó, J., Molina, J.: An automatic dialog simulation technique to develop and evaluate interactive conversational agents. Appl. Artif. Intell. 27(9), 759–780 (2013)CrossRefGoogle Scholar
  7. 7.
    Kelly, J., Angelov, P., Trevisan, J., Vlachopoulou, A., Paraskevaidis, E., Martin-Hirsch, P., Martin, F.: Robust classification of low-grade cervical cytology following analysis with atr-ftir spectroscopy and subsequent application of self-learning classifier eclass. Anal. Bioanal. Chem. 398(5), 2191–2201 (2010)CrossRefGoogle Scholar
  8. 8.
    Lee, C., Jung, S., Kim, K., Lee, G.G.: Hybrid approach to robust dialog management using agenda and dialog examples. Comput. Speech Lang. 24(4), 609–631 (2010)CrossRefGoogle Scholar
  9. 9.
    Levin, E., Pieraccini, R., Eckert, W.: A stochastic model of human-machine interaction for learning dialog strategies. IEEE Trans. Speech Audio Process. 8(1), 11–23 (2000)CrossRefGoogle Scholar
  10. 10.
    McTear, M.F., Callejas, Z., Griol, D.: The Conversational Interface: Talking to Smart Devices. Springer, Switzerland (2016)CrossRefGoogle Scholar
  11. 11.
    Meng, H.H., Wai, C., Pieraccini, R.: The use of belief networks for mixed-initiative dialog modeling. IEEE Trans. Speech Audio Process. 11(6), 757–773 (2003)CrossRefGoogle Scholar
  12. 12.
    Paek, T., Horvitz, E.: Conversation as action under uncertainty. In: Proceedings of UCAI 2000, pp. 455–464 (2000)Google Scholar
  13. 13.
    Planells, J., Hurtado, L., Sanchis, E., Segarra, E.: An online generated transducer to increase dialog manager coverage. In: Proceedings of Interspeech 2012 (2012)Google Scholar
  14. 14.
    Roy, N., Pineau, J., Thrun, S.: Spoken dialogue management using probabilistic reasoning. In: Proceedings of ACL 2000, pp. 93–100 (2000)Google Scholar
  15. 15.
    Schatzmann, J., Weilhammer, K., Stuttle, M., Young, S.: A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies. Knowl. Eng. Rev. 21(2), 97–126 (2006)CrossRefGoogle Scholar
  16. 16.
    Segarra, E., Hurtado, L.: Construction of language models using morfic generator grammatical inference MGGI methodology. In: Proceedings of Eurospeech 1997, pp. 2695–2698 (1997)Google Scholar
  17. 17.
    Singh, S., Kearns, M., Litman, D., Walker, M.: Reinforcement learning for spoken dialogue systems. In: Proceedings of NIPS 1999, pp. 956–962 (1999)Google Scholar
  18. 18.
    Suendermann, D., Pieraccini, R.: One year of contender: what have we learned about assessing and tuning industrial spoken dialog systems? In: Proceedings of SDCTD 2012, pp. 45–48 (2012)Google Scholar
  19. 19.
    Wilks, Y., Catizone, R., Worgan, S., Turunen, M.: Some background on dialogue management and conversational speech for dialogue systems. Comput. Speech Lang. 25, 128–139 (2011)CrossRefGoogle Scholar
  20. 20.
    Young, S., Gasic, M., Thomson, B., Williams, J.: POMDP-based statistical spoken dialogue systems: a review. In: Proceedings of IEEE 2013, Montreal, Canada, pp. 1–18 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David Griol
    • 1
    Email author
  • Aracel Sanchis de Miguel
    • 1
  • José Manuel Molina
    • 1
  1. 1.Computer Science DepartmentCarlos III University of MadridLeganésSpain

Personalised recommendations