Advertisement

Sentiment Analysis on TripAdvisor: Are There Inconsistencies in User Reviews?

  • Ana ValdiviaEmail author
  • M. Victoria Luzón
  • Francisco Herrera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)

Abstract

The number of online reviews has grown exponentially over the last years. As a result, several Sentiment Analysis Methods (SAMs) have been developed in order to extract automatically sentiments from text. In this work, we study polarity coherencies between reviewers and SAMs. To do so, we compare the polarity of the document evaluated by the user and the aggregated sentence polarity evaluated by three SAMs. The main contribution of this work is to show the flimsiness of user ratings as a generalization of the overall review sentiment.

Keywords

Sentiment Analysis Opinion mining Online reviews 

Notes

We thank the anonymous reviewers for their constructive feedback. This research has been supported by FEDER and the Spanish National Research Project TIN2014-57251-P.

References

  1. 1.
    Aciar, S.: Mining context information from consumers reviews. In: Proceedings of Workshop on Context-Aware Recommender System, vol. 201. ACM (2010)Google Scholar
  2. 2.
    Arnold, T., Tilton, L.: R packages. In: Arnold, T., Tilton, L. (eds.) Humanities Data in R. Quantitative Methods in the Humanities and Social Sciences, pp. 179–182. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Ayeh, J.K., Au, N., Law, R.: Do we believe in tripadvisor? examining credibility perceptions and online travelers attitude toward using user-generated content. J. Travel Res. 52(4), 437–452 (2013)CrossRefGoogle Scholar
  4. 4.
    Baccianella, S., Esuli, A., Sebastiani, F.: Multi-facet rating of product reviews. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 461–472. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00958-7_41 CrossRefGoogle Scholar
  5. 5.
    Banić, L., Mihanović, A., Brakus, M.: Using big data and sentiment analysis in product evaluation. In: 2013 36th International Convention on Information & Communication Technology Electronics & Microelectronics (MIPRO), pp. 1149–1154. IEEE (2013)Google Scholar
  6. 6.
    Duan, W., Cao, Q., Yu, Y., Levy, S.: Mining online user-generated content: using sentiment analysis technique to study hotel service quality. In: 2013 46th Hawaii International Conference on System Sciences (HICSS), pp. 3119–3128. IEEE (2013)Google Scholar
  7. 7.
    ElSahar, H., El-Beltagy, S.R.: Building large arabic multi-domain Resources for sentiment analysis. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 23–34. Springer, Cham (2015). doi: 10.1007/978-3-319-18117-2_2 Google Scholar
  8. 8.
    Filieri, R., Alguezaui, S., McLeay, F.: Why do travelers trust tripadvisor? antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth. Tourism Manag. 51, 174–185 (2015)CrossRefGoogle Scholar
  9. 9.
    García, A., Gaines, S., Linaza, M.T., et al.: A lexicon based sentiment analysis retrieval system for tourism domain. Expert Syst. Appl. Int. J. 39(10), 9166–9180 (2012)CrossRefGoogle Scholar
  10. 10.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  11. 11.
    Hu, M., Liu, B.: Mining opinion features in customer reviews. In: AAAI, vol. 4, 755–760 (2004)Google Scholar
  12. 12.
    Jeacle, I., Carter, C.: In tripadvisor we trust: rankings, calculative regimes and abstract systems. Acc. Organ. Soc. 36(4), 293–309 (2011)CrossRefGoogle Scholar
  13. 13.
    Jockers, M.: Package syuzhet (2016)Google Scholar
  14. 14.
    Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, 2nd edn., pp. 627–666. Chapman and Hall/CRC, Boca Raton (2010)Google Scholar
  15. 15.
    Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press, New York (2015)CrossRefGoogle Scholar
  16. 16.
    Lu, B., Ott, M., Cardie, C., Tsou, B.K.: Multi-aspect sentiment analysis with topic models. In: 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW), pp. 81–88. IEEE (2011)Google Scholar
  17. 17.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford coreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60 (2014)Google Scholar
  18. 18.
    Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)CrossRefGoogle Scholar
  19. 19.
    Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B.: Orphée de clercq, véronique hoste, marianna apidianaki, xavier tannier, natalia loukachevitch, evgeny kotelnikov, nuria bel, salud marıa jiménez-zafra, and gülsen eryigit. semeval-2016 task 5: Aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval, vol. 16 (2016)Google Scholar
  20. 20.
    Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews. In: Kao, A., Poteet, S.R. (eds.) Natural Language Processing and Text Mining, pp. 9–28. Springer, London (2007)CrossRefGoogle Scholar
  21. 21.
    Ribeiro, F.N., Araújo, M., Gonçalves, P., Benevenuto, F., Gonçalves, M.A.: Sentibench-a benchmark comparison of state-of-the-practice sentiment analysis methods. arXiv preprint arXiv:1512.01818 (2015)
  22. 22.
    Serrano-Guerrero, J., Olivas, J.A., Romero, F.P., Herrera-Viedma, E.: Sentiment analysis: a review and comparative analysis of web services. Inf. Sci. 311, 18–38 (2015)CrossRefGoogle Scholar
  23. 23.
    Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), vol. 1631, p. 1642. Citeseer (2013)Google Scholar
  24. 24.
    Titov, I., McDonald, R.T.: A joint model of text and aspect ratings for sentiment summarization. In: ACL, vol. 8, pp. 308–316. Citeseer (2008)Google Scholar
  25. 25.
    Wickham, H.: rvest: Easily harvest (scrape) web pages. R package version 0.2. http://CRAN.R-project.org/package=rvest (2015)
  26. 26.
    Yoo, K.H., Lee, Y., Gretzel, U., Fesenmaier, D.R.: Trust in travel-related consumer generated media. In: Höpken, W., Gretzel, U., Law, R. (eds.) Information and Communication Technologies in Tourism, pp. 49–59. Springer, Vienna (2009)Google Scholar
  27. 27.
    Zhang, H.Y., Ji, P., Wang, J., Chen, X.: A novel decision support model for satisfactory restaurants utilizing social information: a case study of tripadvisor.com. Tourism Manag. 59, 281–297 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ana Valdivia
    • 1
    Email author
  • M. Victoria Luzón
    • 2
  • Francisco Herrera
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.Department of Software EngineeringUniversity of GranadaGranadaSpain

Personalised recommendations