Kernel Density-Based Pattern Classification in Blind Fasteners Installation

  • Alberto Diez-OlivanEmail author
  • Mariluz Penalva
  • Fernando Veiga
  • Lutz Deitert
  • Ricardo Sanz
  • Basilio Sierra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)


In this work we introduce a kernel density-based pattern classification approach for the automatic identification of behavioral patterns from monitoring data related to blind fasteners installation. High density regions are estimated from feature space to establish behavioral patterns, automatically removing outliers and noisy instances in an iterative process. First the kernel density estimator is applied on the fastener features representing the quality of the installation. Then the behavioral patterns are identified from resulting high density regions, also considering the proximity between instances. Patterns are computed as the average of related monitoring torque-rotation diagrams. New fastening installations can be thus automatically classified in an online fashion. In order to show the validity of the approach, experiments have been conducted on real fastening data. Experimental results show an accurate pattern identification and classification approach, obtaining a global accuracy over \(78\%\) and improving current detection capabilities and existing evaluation systems.


Kernel density estimator Behavioral patterns Unsupervised classification Outlier detection Blind fasteners installation Machine learning 



These results are part of a project that has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement 686827.


  1. 1.
    Madsen, E.S., Bilberg, A., Hansen, D.G.: Industry 4.0 and digitalization call for vocational skills, applied industrial engineering, and less for pure academics. In: 5th World Conference on Production and Operations Management P&OM (2016)Google Scholar
  2. 2.
    Yin, S., Ding, S.X., Zhou, D.: Diagnosis and prognosis for complicated industrial systems—part I. IEEE Trans. Ind. Electron. 63(4), 2501–2505 (2016)CrossRefGoogle Scholar
  3. 3.
    Yin, S., Ding, S.X., Zhou, D.: Diagnosis and prognosis for complicated industrial systems—part II. IEEE Trans. Ind. Electron. 63(5), 3201–3204 (2016)CrossRefGoogle Scholar
  4. 4.
    Severson, K., Chaiwatanodom, P., Braatz, R.D.: Perspectives on process monitoring of industrial systems. Ann. Rev. Control 42, 190–200 (2016)CrossRefGoogle Scholar
  5. 5.
    Diez-Olivan, A., Pagan, J.A., Sanz, R., Sierra, B.: Data-driven prognostics using a combination of constrained k-means clustering, fuzzy modeling and LOF-based score. Neurocomputing 241, 97–107 (2017)., CrossRefGoogle Scholar
  6. 6.
    Serdio, F., Lughofer, E., Zavoianu, A.-C., Pichler, K., Pichler, M., Buchegger, T., Efendic, H.: Improved fault detection employing hybrid memetic fuzzy modeling and adaptive filters. Appl. Soft Comput. 51, 60–82 (2017)CrossRefGoogle Scholar
  7. 7.
    Wang, K., Gelgele, H.L., Wang, Y., Yuan, Q., Fang, M.: A hybrid intelligent method for modelling the edm process. Int. J. Mach. Tools Manuf. 43(10), 995–999 (2003)CrossRefGoogle Scholar
  8. 8.
    Vera, V., Sedano, J., Corchado, E., Redondo, R., Hernando, B., Camara, M., Laham, A., Garcia, A.E.: A hybrid system for dental milling parameters optimisation. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011. LNCS, vol. 6679, pp. 437–446. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21222-2_53 CrossRefGoogle Scholar
  9. 9.
    Monogram Aerospace Fasteners: MBF2003 Installation and Inspection Specification for Composi-lok II Blind Fasteners, April 2008.
  10. 10.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press, Boca Raton (1986)CrossRefzbMATHGoogle Scholar
  11. 11.
    Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Ann. Stat. 20, 1236–1265 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Scott, D.W.: Multivariate Density Estimation: Theory, Practice and Visualization. John Wiley & Sons, New York (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bashtannyk, D.M., Hyndman, R.J.: Bandwidth selection for kernel conditional density estimation. Comput. Stat. Data Anal. 36(3), 279–298 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the gaussian kernel for scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 1, 26–33 (1986)CrossRefzbMATHGoogle Scholar
  15. 15.
    Aggarwal, C.C.: Proximity-based outlier detection. In: Aggarwal, C.C. (ed.) Outlier Analysis, pp. 101–133. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Kung, S.Y.: Kernel Methods and Machine Learning. Cambridge University Press, Cambridge (2014)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alberto Diez-Olivan
    • 1
    Email author
  • Mariluz Penalva
    • 1
  • Fernando Veiga
    • 1
  • Lutz Deitert
    • 2
  • Ricardo Sanz
    • 3
  • Basilio Sierra
    • 4
  1. 1.Tecnalia Research and InnovationDonostia - San SebastiánSpain
  2. 2.Airbus Operations GmbHBremenGermany
  3. 3.Autonomous Systems LaboratoryUniv. Politécnica de MadridMadridSpain
  4. 4.Department of Computer Sciences and Artificial IntelligenceUPV/EHUDonostia - San SebastiánSpain

Personalised recommendations