PSO with Partial Population Restart Based on Complex Network Analysis

  • Michal PluhacekEmail author
  • Adam Viktorin
  • Roman Senkerik
  • Tomas Kadavy
  • Ivan Zelinka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)


This study presents a hybridization of Particle Swarm Optimization with a complex network creation and analysis. A partial population is performed in certain moments of the run of the algorithm based on the information obtained from a complex network structure that represents the communication in the population. We present initial results alongside statistical evaluation and discuss future possibilities of this approach.


Swarm intelligence Particle Swarm Optimization Complex Network Hybrid method 



This work was supported by Grant Agency of the Czech Republic – GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014. Also by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2017/004.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 69–73 (1998)Google Scholar
  3. 3.
    Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308 (1997)Google Scholar
  4. 4.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011). ISSN:1568-4946CrossRefGoogle Scholar
  5. 5.
    Zelinka, I., Davendra, D., Enkek, R., Jaek, R.: Do evolutionary algorithm dynamics create complex network structures? Complex Syst. 20(2), 127–140 (2011). ISSN:0891–2513Google Scholar
  6. 6.
    Zelinka, I.: Investigation on relationship between complex network and evolutionary algorithms dynamics. In: AIP Conference Proceedings, vol. 1389, no. 1, pp. 1011–1014 (2011)Google Scholar
  7. 7.
    Zelinka, I., Davendra, D.D., Chadli, M., Senkerik, R., Dao, T.T., Skanderova, L.: Evolutionary dynamics as the structure of complex networks. In: Zelinka, I., Snasel, V., Abraham, A. (eds.) Handbook of Optimization. ISRL, vol. 38, pp. 215–243. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Davendra, D., Zelinka, I., Senkerik, R., Pluhacek, M.: Complex network analysis of discrete self-organising migrating algorithm. In: Zelinka, I., Suganthan, P., Chen, G., Snasel, V., Abraham, A., Rossler, O. (eds.) Nostradamus 2014: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing, vol. 289, pp. 161–174. Heidelberg, Springer (2014)Google Scholar
  9. 9.
    Davendra, D., Zelinka, I., Metlicka, M., Senkerik, R., Pluhacek, M.: Complex network analysis of differential evolution algorithm applied to flowshop with no-wait problem. In: 2014 IEEE Symposium on Differential Evolution (SDE), pp. 1–8, 9–12 December (2014)Google Scholar
  10. 10.
    Newman, M.E.J.: The mathematics of networks. New Palgrave Encycl. Econ. 2(2008), 1–12 (2008)Google Scholar
  11. 11.
    Digalakis, J.G., Margaritis, K.G.: On benchmarking functions for genetic algorithms. Int. J. Comput. Math. 77(4), 481–506 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dieterich, J.M., Hartke, B.: Empirical review of standard benchmark functions using evolutionary global optimization. arXiv preprint arXiv:1207.4318 (2012)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michal Pluhacek
    • 1
    Email author
  • Adam Viktorin
    • 1
  • Roman Senkerik
    • 1
  • Tomas Kadavy
    • 1
  • Ivan Zelinka
    • 2
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations