Advertisement

Optimization of Joint Sales Potential Using Genetic Algorithm

  • Chun Yin Yip
  • Kwok Yip SzetoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)

Abstract

The joint sales potential of a group of nodes in a complex network is defined as the ratio of the number of elements in the union of their second-degree neighbors to that in the union of their first-degree neighbors. A high joint sales potential implies the nodes’ high efficiency in disseminating information in the network. Advertisers may want to look for the group of nodes that has the highest joint sales potential and hire them as advertising agents. Due to the impracticality of exhaustive search, this paper presents a mutation-only genetic algorithm for optimizing the joint sales potential of a group of m nodes in an n-node undirected complex network. The algorithm is tested with artificial and real networks and gives satisfactory results. This shows the algorithm’s effectiveness in joint sales potential optimization.

Keywords

Advertising strategies Undirected complex network Sales potential Mutation-only genetic algorithm 

Notes

Acknowledgement

C.Y. Yip acknowledges the support of the Hong Kong University of Science and Technology Undergraduate Research Opportunity Program (UROP) and the discussion of Lui Ga Ching.

References

  1. 1.
    Ver Steeg, G., Galstyan, A.: Information transfer in social media. In: Proceedings of the 21st International Conference on World Wide Web, pp. 509–518. ACM (2012)Google Scholar
  2. 2.
    May, R.M., Levin, S.A., Sugihara, G.: Complex systems: Ecology for bankers. Nature 451, 893–895 (2008)CrossRefGoogle Scholar
  3. 3.
    Eboli, M.: Financial applications of flow network theory. In: Proto, A.N., Squillante, M., Kacprzyk, J. (eds.) Advanced Dynamic Modeling of Economic and Social Systems. SCI, vol. 448, pp. 21–29. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Haldane, A.G., May, R.M.: Systemic risk in banking ecosystems. Nature 469, 351–355 (2011)CrossRefGoogle Scholar
  5. 5.
    May, R.M.: Networks and webs in ecosystems and financial systems. Philos. Trans. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 371, 20120376 (2013)Google Scholar
  6. 6.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Stanford InfoLab (1999)Google Scholar
  8. 8.
    Wang, C.G., Szeto, K.Y.: Sales Potential Optimization on Directed Social Networks: A Quasi-Parallel Genetic Algorithm Approach. In: Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 114–123. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29178-4_12 CrossRefGoogle Scholar
  9. 9.
    Sefiane, S., Benbouziane, M.: Portfolio selection using genetic algorithm. J. Appl. Financ. Banking 2, 143 (2012)Google Scholar
  10. 10.
    Luk, P.W.-H., Lui, G.C., Szeto, K.Y.: Optimization of systemic stability of directed network using genetic algorithm. In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1–6. IEEE (2016)Google Scholar
  11. 11.
    Xia, C., Guo, P., Shi, T., Wang, M.: Speed control of brushless DC motor using genetic algorithm based fuzzy controller. In: Proceeding of the 2004 International Conference on Intelligent Mechatronics and Automation, Chengdu, China, 3rd edn. A Treatise on Electricity and Magnetism, pp. 68–73 (2004)Google Scholar
  12. 12.
    Lui, G.C., Wu, D., Cheung, K.W., Ma, H.F., Szeto, K.Y.: Time warping of apneic ECG signals using genetic algorithm. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 178–184. IEEE (2016)Google Scholar
  13. 13.
    Szeto, K.Y., Zhang, J.: Adaptive genetic algorithm and quasi-parallel genetic algorithm: application to knapsack problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 189–196. Springer, Heidelberg (2006). doi: 10.1007/11666806_20 CrossRefGoogle Scholar
  14. 14.
    Shiu, K.L., Szeto, K.Y.: Self-adaptive mutation only genetic algorithm: an application on the optimization of airport capacity utilization. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 428–435. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88906-9_54 CrossRefGoogle Scholar
  15. 15.
    Chen, C., Wang, G., Szeto, K.Y.: Markov chains genetic algorithms for airport scheduling. In: Proceedings of the 9th International FLINS Conference on Foundations and Applications of Computational Intelligence (FLINS 2010), pp. 905–910 (2010)Google Scholar
  16. 16.
    Wang, G., Wu, D., Chen, W., Szeto, K.Y.: Importance of information exchange in quasi-parallel genetic algorithms. In: Krasnogor, N. (ed.) Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO 2011), pp. 127–128. ACM, New York (2011)Google Scholar
  17. 17.
    Law, N.L., Szeto, K.Y.: Adaptive genetic algorithms with mutation and crossover matrices. In: Proceeding of the 12th International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, 6–12 January 2007. Theme: Al and Its Benefits to Society, vol. II, pp. 2330–2333 (2007)Google Scholar
  18. 18.
    Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–60 (1960)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tore Opsahl: Datasets. http://toreopsahl.com/datasets/
  23. 23.
    Opsahl, T.: Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Netw. 35, 159–167 (2013)CrossRefGoogle Scholar
  24. 24.
    Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98, 404–409 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsThe Hong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations