Skip to main content

Convergence of Even Simpler Robots without Position Information

  • Conference paper
  • First Online:
Networked Systems (NETYS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10299))

Included in the following conference series:

Abstract

The design of distributed gathering and convergence algorithms for tiny robots has recently received much attention. In particular, it has been shown that the convergence problem, that is, the problem of moving robots close to each other (i.e., inside an area of some maximum size, where the position of the area is not fixed beforehand), can even be solved for very weak, oblivious robots: robots which cannot maintain state from one round to the next. The oblivious robot model is hence attractive from a self-stabilization perspective, where the state is subject to adversarial manipulation. However, to the best of our knowledge, all existing robot convergence protocols rely on the assumption that robots, despite being “weak”, can measure distances.

We in this paper initiate the study of convergence protocols for even simpler robots, called monoculus robots: robots which cannot measure distances. In particular, we introduce two natural models which relax the assumptions on the robots’ cognitive capabilities: (1) a Locality Detection (\(\mathscr {LD}\)) model in which a robot can only detect whether another robot is closer than a given constant distance or not, (2) an Orthogonal Line Agreement (\(\mathscr {OLA}\)) model in which robots only agree on a pair of orthogonal lines (say North-South and West-East, but without knowing which is which).

The problem turns out to be non-trivial, as simple strategies like median and angle bisection can easily increase the distances among robots (e.g., the area of the enclosing convex hull) over time. Our main contribution is deterministic self-stabilizing convergence algorithms for these two models. We also show that in some sense, the assumptions made in our models are minimal: by relaxing the assumptions on the monoculus robots further, we run into impossibility results.

S. Schmid—Trip to IIT Guwahati and research funded by the Global Initiative of Academic Networks (GIAN), an initiative by the Govt. of India for Higher Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wolfram Mathematica Documentation: BoxWhiskerChart (2010). http://reference.wolfram.com/language/ref/BoxWhiskerChart.html

  4. Dolev, S.: Self-stabilization. MIT press, Cambridge (2000)

    MATH  Google Scholar 

  5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Distributed coordination of a set of autonomous mobile robots. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 480–485 (2000)

    Google Scholar 

  6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots. ISAAC 1999. LNCS, vol. 1741, pp. 93–102. Springer, Heidelberg (1999). doi:10.1007/3-540-46632-0_10

    Chapter  Google Scholar 

  7. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbert, S., Lynch, N., Mitra, S., Nolte, T.: Self-stabilizing robot formations over unreliable networks. ACM Trans. Auton. Adapt. Syst. 4(3), 17:1–17:29 (2009)

    Article  Google Scholar 

  9. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. TAAS 4(1), 9:1–9:27 (2009)

    Article  Google Scholar 

  12. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. J. Rob. Syst. 13(3), 127–139 (1996)

    Article  MATH  Google Scholar 

  13. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pattanayak, D., Mondal, K., Mandal, P.S., Schmid, S. (2017). Convergence of Even Simpler Robots without Position Information. In: El Abbadi, A., Garbinato, B. (eds) Networked Systems. NETYS 2017. Lecture Notes in Computer Science(), vol 10299. Springer, Cham. https://doi.org/10.1007/978-3-319-59647-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59647-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59646-4

  • Online ISBN: 978-3-319-59647-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics