A Secure and Fast Dispersal Storage Scheme Based on the Learning with Errors Problem

  • Ling Yang
  • Fuyang Fang
  • Xianhui LuEmail author
  • Wen-Tao Zhu
  • Qiongxiao Wang
  • Shen Yan
  • Shiran Pan
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 198)


Data confidentiality and availability are of primary concern in data storage. Dispersal storage schemes achieve these two security properties by transforming the data into multiple codewords and dispersing them across multiple storage servers. Existing schemes achieve confidentiality and availability by various cryptographic and coding algorithms, but only under the assumption that an adversary cannot obtain more than a certain number of codewords. Meanwhile existing schemes are designed for storing archives. In this paper, we propose a novel dispersal storage scheme based on the learning with errors problem, known as storage with errors (SWE). SWE can resist even more powerful adversaries. Besides, SWE favorably supports dynamic data operations that are both efficient and secure, which is more practical for cloud storage. Furthermore, SWE achieves security at relatively low computational overhead, but the same storage cost compared with the state of the art. We also develop a prototype to validate and evaluate SWE. Analysis and experiments show that with proper configurations, SWE outperforms existing schemes in encoding/decoding speed.


Dispersal storage Data confidentiality Data availability Dynamic data operations The learning with errors problem 


  1. 1.
    Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Keep a few: outsourcing data while maintaining confidentiality. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04444-1_27 CrossRefGoogle Scholar
  2. 2.
    Samarati, P., Di Vimercati, S.D.C.: Data protection in outsourcing scenarios: issues and directions. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 1–14. ACM (2010)Google Scholar
  3. 3.
    Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dispersed storage systems. In: Proceedings of the 9th USENIX Conference on File and Storage Technologies, pp. 229–240 (2011)Google Scholar
  4. 4.
    Bairavasundaram, L.N., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Goodson, G.R., Schroeder, B.: An analysis of data corruption in the storage stack. ACM Trans. Storage (TOS) 4(3), 8 (2008)Google Scholar
  5. 5.
    Ab Rahman, N.H., Choo, K.K.R.: A survey of information security incident handling in the cloud. Comput. Secur. 49, 45–69 (2015)CrossRefGoogle Scholar
  6. 6.
    Amazon S3 availability event: July 20, 2008 (2008).
  7. 7.
    Experts say Facebook leak of 6 million users data might be bigger than we thought (2013).
  8. 8.
    iCloud leaks of celebrity photos (2014).
  9. 9.
    Storer, M.W., Greenan, K.M., Miller, E.L., Voruganti, K.: POTSHARDS–a secure, recoverable, long-term archival storage system. ACM Trans. Storage (TOS) 5(2), 5 (2009)Google Scholar
  10. 10.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rabin, M.O.: Efficient dispersal of information for security, load balancing, fault tolerance. J. ACM (JACM) 36(2), 335–348 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). doi: 10.1007/3-540-48329-2_12 CrossRefGoogle Scholar
  13. 13.
    Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(4), 15 (2015)CrossRefGoogle Scholar
  14. 14.
    Dong, X., Jiadi, Y., Luo, Y., Chen, Y., Xue, G., Li, M.: Achieving an effective, scalable and privacy-preserving data sharing service in cloud computing. Comput. Secur. 42, 151–164 (2014)CrossRefGoogle Scholar
  15. 15.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the learning-with-errors problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 18–34. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_2 CrossRefGoogle Scholar
  17. 17.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pp. 575–584. ACM (2013)Google Scholar
  18. 18.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_41 CrossRefGoogle Scholar
  19. 19.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: dependable and secure storage in a cloud-of-clouds. ACM Trans. Storage (TOS) 9(4), 12 (2013)Google Scholar
  21. 21.
    Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: a case for cloud storage diversity. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 229–240. ACM (2010)Google Scholar
  22. 22.
    Arora, S., Ge, R.: Learning parities with structured noise. Electron. Colloquium Comput. Complex. 17, 66 (2010)Google Scholar
  23. 23.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    New instructions supporting the secure hash algorithm on Intel architecture processors (2013).
  25. 25.
    NTL: A library for doing number theory (2015).
  26. 26.
    Plank, J.S., Simmerman, S., Schuman, C.D.: Jerasure: a library in c/c++ facilitating erasure coding for storage applications-version 1.2. Technical report. Citeseer (2008)Google Scholar
  27. 27.
    Curty, M.: Quantum cryptography: know your enemy. Nat. Phys. 10(7), 479–480 (2014)CrossRefGoogle Scholar
  28. 28.
    Drevet, C.É., Islam, M.N., Schost, É.: Optimization techniques for small matrix multiplication. Theor. Comput. Sci. 412(22), 2219–2236 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • Ling Yang
    • 1
    • 2
    • 3
  • Fuyang Fang
    • 1
    • 2
    • 3
  • Xianhui Lu
    • 1
    • 2
    Email author
  • Wen-Tao Zhu
    • 1
    • 2
  • Qiongxiao Wang
    • 1
    • 2
  • Shen Yan
    • 1
    • 2
    • 3
  • Shiran Pan
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations