Complete Submodularity Characterization in the Comparative Independent Cascade Model

  • Wei Chen
  • Hanrui ZhangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10336)


We study the propagation of comparative ideas in social network. A full characterization for submodularity in the comparative independent cascade (Com-IC) model of two-idea cascade is given, for competing ideas and complementary ideas respectively. We further introduce One-Shot model where agents show less patience toward ideas, and show that in One-Shot model, only the stronger idea spreads with submodularity.



We would like to thank Yingru Li for some early discussions on the subject.


  1. 1.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77105-0_31 CrossRefGoogle Scholar
  2. 2.
    Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17572-5_48 CrossRefGoogle Scholar
  3. 3.
    Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: Proceedings of the 20th International Conference on World Wide Web, pp. 665–674. ACM (2011)Google Scholar
  4. 4.
    Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincon, D., Sun, X., Wang, Y., Wei, W., Yuan, Y.: Influence maximization in social networks when negative opinions may emerge and propagate. In: SDM, vol. 11, pp. 379–390. SIAM (2011)Google Scholar
  5. 5.
    Datta, S., Majumder, A., Shrivastava, N.: Viral marketing for multiple products. In: 2010 IEEE International Conference on Data Mining, pp. 118–127. IEEE (2010)Google Scholar
  6. 6.
    He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social networks under the competitive linear threshold model. In: SDM, pp. 463–474. SIAM (2012)Google Scholar
  7. 7.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)Google Scholar
  8. 8.
    Lu, W., Bonchi, F., Goyal, A., Lakshmanan, L.V.: The bang for the buck: fair competitive viral marketing from the host perspective. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 928–936. ACM (2013)Google Scholar
  9. 9.
    Lu, W., Chen, W., Lakshmanan, L.V.: From competition to complementarity: comparative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–71 (2015)CrossRefGoogle Scholar
  10. 10.
    Narayanam, R., Nanavati, A.A.: Viral marketing for product cross-sell through social networks. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS, vol. 7524, pp. 581–596. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33486-3_37 CrossRefGoogle Scholar
  11. 11.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions–I. Math. Program. 14(1), 265–294 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Microsoft ResearchBeijingChina
  2. 2.Tsinghua UniversityBeijingChina

Personalised recommendations