Skip to main content

The Complexity of Finding (Approximate Sized) Distance-d Dominating Set in Tournaments

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10336))

Included in the following conference series:

  • 659 Accesses

Abstract

A tournament is an orientation of a complete graph. For a positive integer d, a distance-d dominating set in a tournament is a subset S of vertices such that every vertex in \(V{\setminus }S\) is reachable by a path of length at most d from one of the vertices in S. When \(d=1\), the set is simply called a dominating set. While the complexity of finding a k-sized dominating set is complete for the complexity class LOGSNP and the parameterized complexity class W[2], it is well-known that every tournament on n vertices has a dominating set of size \(g(n) = \lg n - \lg \lg n + 2\) that can be found in \({{\mathrm{O}}}\left( n^2 \right) \) time. We first show that for any k, one can find a dominating set of size at most \( k + g(n)\) in \({{\mathrm{O}}}\left( n^2/k \right) \) time, and prove an (unconditional) lower bound of \(\varOmega (n^2/k)\) for any \(k > \epsilon \lg n\) for any \(\epsilon >0\). Hence in particular, we can find a \((1+\epsilon ) \lg n\) sized dominating set in the optimal \(\varTheta ({n^2/\lg n})\) time.

For distance-d dominating sets, it is known that any tournament has a distance-2 dominating set consisting of a single vertex. Such a vertex is called a king or a 2-king and can be found in \({{\mathrm{O}}}\left( n \sqrt{n} \right) \) time. It follows that there is a vertex, from which every other vertex is reachable by a path of length at most d for any \(d \ge 2\) and such a vertex is called a d-king. A d-king can be found in \({{\mathrm{O}}}\left( n^{1+1/2^{d-1}} \right) \) for any \(d \ge 2\) [3]. We generalize our result for dominating set to show that for \(d \ge 2\),

  • we can find a k-sized distance-d dominating set in a tournament in \({{\mathrm{O}}}\left( k(n/k)^{1+1/2^{d-1}} \right) \) time for any \(k \ge 1\), and

  • we can find a \((g(n) + k)\)-sized distance-d dominating set in a tournament using \({{\mathrm{O}}}\left( k(n/k)^{1+1/(2^d-1)} \right) \) time for any \(k \ge 1\).

The second algorithm provides a faster runtime for finding distance-d dominating sets that are larger than g(n). We also show that the second algorithm is optimal whenever \(k \ge \epsilon \lg n\) for any \(\epsilon > 0\).

Thus our algorithms provide tradeoffs between the (additive) approximation factor and the complexity of finding distance-d dominating sets in tournaments. For the problem of finding a d-king, we show some additional results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12 January 2016, pp. 377–391 (2016)

    Google Scholar 

  2. Acharya, J., Falahatgar, M., Jafarpour, A., Orlitksy, A., Suresh, A.T.: Maximum selection and sorting with adversarial comparators and an application to density estimation. Comput. Res. Repos. abs/1606.02786, 1–24 (2016)

    Google Scholar 

  3. Ajtai, M., Feldman, V., Hassidim, A., Nelson, J.: Sorting and selection with imprecise comparisons. ACM Trans. Algorithms 12(2), 19:1–19:19 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, Hoboken (1992)

    MATH  Google Scholar 

  5. Balasubramanian, R., Raman, V., Srinivasaragavan, G.: Finding scores in tournaments. J. Algorithms 24(2), 380–394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  7. Garg, S., Philip, G.: Raising the bar for vertex cover: fixed-parameter tractability above a higher guarantee. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12 January 2016, pp. 1152–1166 (2016)

    Google Scholar 

  8. Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: a case study for longest path on interval graphs. In: Husfeldt, T., Kanj, I. (eds.) 10th International Symposium on Parameterized and Exact Computation (IPEC 2015), Leibniz International Proceedings in Informatics (LIPIcs), vol. 43, pp. 102–113. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015)

    Google Scholar 

  9. Graham, R.L., Spencer, J.H.: A constructive solution to a tournament problem. Canad. Math. Bull. 14, 45–48 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gutin, G., Yeo, A.: Constraint satisfaction problems parameterized above or below tight bounds: a survey. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 257–286. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30891-8_14

    Chapter  Google Scholar 

  11. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lu, X., Wang, D., Wong, C.K.: On the bounded domination number of tournaments. Discret. Math. 220(1–3), 257–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maurer, S.B.: The king chicken theorems. Math. Mag. 53(2), 67–80 (1980)

    Article  MathSciNet  Google Scholar 

  16. Megiddo, N., Vishkin, U.: On finding a minimum dominating set in a tournament. Theor. Comput. Sci. 61, 307–316 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moon, J.: Topics on tournaments. In: Selected Topics in Mathematics. Athena series. Holt, Rinehart and Winston (1968)

    Google Scholar 

  18. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the complexity of the V-C dimension. J. Comput. Syst. Sci. 53(2), 161–170 (1996). http://dx.doi.org/10.1006/jcss.1996.0058

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, J., Sheng, L., Wu, J.: Searching for sorted sequences of kings in tournaments. SIAM J. Comput. 32(5), 1201–1209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varunkumar Jayapaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Biswas, A., Jayapaul, V., Raman, V., Satti, S.R. (2017). The Complexity of Finding (Approximate Sized) Distance-d Dominating Set in Tournaments. In: Xiao, M., Rosamond, F. (eds) Frontiers in Algorithmics. FAW 2017. Lecture Notes in Computer Science(), vol 10336. Springer, Cham. https://doi.org/10.1007/978-3-319-59605-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59605-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59604-4

  • Online ISBN: 978-3-319-59605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics