Phase Transition for Maximum Not-All-Equal Satisfiability

  • Junping Zhou
  • Shuli Hu
  • Tingting Zou
  • Minghao YinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10336)


Phase transition is a dramatic transition from one state to another state when a particular parameter varies. This paper aims to study the phase transition of maximum not-all-equal satisfiability problem (Max NAE SAT), an optimization of not-all-equal satisfiability problem (NAE SAT). Given a conjunctive normal formula (CNF) F with n variables and rn k-clauses (the clause exactly contains k literals), we use first-moment method to obtain an upper bound for f(nrn) the expectation of the maximum number of NAE-satisfied clauses of random Max NAE k-SAT. In addition, we also consider the phase transition of decision version of random Max NAE k-SAT—bounded not-all-equal satisfiability problem (NAE k-SAT(b)). We demonstrate that there is a phase transition point \(r_{k,b}\) separating the region where almost all NAE k-SAT(b) instances can be solved from the region where almost all NAE k-SAT(b) instances can’t be solved. Furthermore, we analyze the upper bound and lower bound for \(r_{k,b}\).



The authors of this paper wish to extend their sincere gratitude to all anonymous reviewers for their efforts. This work was supported in part by NSFC (under Grant Nos.61503074, 61403076, 61402070, and 61403077), the Natural Science Foundation for Youths of JiLin Province (20160520104JH) and (NCET-13-0724).


  1. 1.
    Xu, K., Li, W.: The SAT phase transition. Sci. China Ser. E 42, 494–501 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Sly, A., Sun, N., Zhang, Y.: The number of solutions for random regular NAE-SAT. In: FOCS (2016)Google Scholar
  3. 3.
    Larrosa, J., Heras, F., De Givry, S.: A logical approach to efficient Max-SAT solving. Artif. Intell. 172(2–3), 204–233 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic phase transitions. Nature 400, 133–137 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random boolean expressions. Science 264, 1297–1301 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems. J. Artif. Intell. Res. 12, 93–103 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fan, Y., Shen, J., Xu, K.: A general model and thresholds for random constraint satisfaction problems original. Artif. Intell. 193, 1–17 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gent, I.P., Walsh, T.: The TSP phase transition. Artif. Intell. 88(1–2), 349–358 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Walsh, T.: Where are the really hard manipulation problems? the phase transition in manipulating the veto rule. In: Proceedings of the 21st International Jont Conference on Artifical intelligence, Morgan Kaufmann Publishers Inc. (2009)Google Scholar
  10. 10.
    Huang, P., Yin, M.: An upper (lower) bound for Max (Min) CSP. Sci. China Inf. Sci. 57(7), 1–9 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gao, J., Wang, J., Yin, M.: Experimental analyses on phase transitions in compiling satisfiability problems. Sci. China Inf. Sci. 58, 1–11 (2015)Google Scholar
  12. 12.
    Zhou, J., Yin, M., Li, X., Wang, J.: Phase transitions of EXPSPACE-complete problems: a further step. Int. J. Found. Comput. Sci. 23(01), 173–184 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Achlioptas, D., Chtcherba, A., Istrate, G., Moore, C.: The phase transition in 1-in-k SAT and NAE 3-SAT. In: SODA, pp. 721–722 (2001)Google Scholar
  14. 14.
    Achlioptas, D.: The asymptotic order of the random k-SAT threshold. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS02), pp. 779–788 (2002)Google Scholar
  15. 15.
    Coja-Oglan, A., Panagiotou, K.: Catching the k-NAE SAT threshold. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 899–908 (May 2012)Google Scholar
  16. 16.
    Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 814–822 (May 2014)Google Scholar
  17. 17.
    Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)CrossRefGoogle Scholar
  18. 18.
    Coppersmith, D., et al.: Random MAX SAT, random MAX CUT, and their phase transitions. Random Struct. Algorithms 24, 502–545 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Xu, X.L., Gao, Z.S., Xu, K.: A tighter upper bound for random MAX 2-SAT. Inf. Process. Lett. 111, 115–119 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, W.: Phase transitions and backbones of 3-SAT and maximum 3-SAT. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 153–167. Springer, Heidelberg (2001). doi: 10.1007/3-540-45578-7_11 CrossRefGoogle Scholar
  21. 21.
    Bailey, D.D., Kolaitis, P.G.: Phase transitions of bounded satisfiability problems. In: IJCAI, pp. 1187–1193 (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Junping Zhou
    • 1
  • Shuli Hu
    • 1
  • Tingting Zou
    • 2
  • Minghao Yin
    • 1
    Email author
  1. 1.College of Computer Science and Information TechnologyNortheast Normal UniversityChangchunChina
  2. 2.College of Information Science and TechnologyDalian Maritime UniversityDalianChina

Personalised recommendations