A 42k Kernel for the Complementary Maximal Strip Recovery Problem

  • Wenjun Li
  • Haiyan Liu
  • Jianxin WangEmail author
  • Lingyun Xiang
  • Yongjie Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10336)


In the Complementary Maximal Strip Recovery problem (CMSR), we are given two strings \(S_1\) and \(S_2\) of distinct letters, where each letter appears either in the positive form or the negative form. The question is whether there are k letters whose deletion results in two matched strings. String \(S_1\) matches string \(S_2\) if there are partitions of \(S_1\) and \(S_2\), such that, for each component \(S_1^i\) of the partition of \(S_1\), there is a unique component \(S_2^j\) in the partition of \(S_2\) which is either equal to \(S_1^i\) or can be obtained from \(S_1^i\) by firstly reversing the order of the letters and then negating the letters. The CMSR problem is known to be NP-hard and fixed-parameter tractable with respect to k. In particular, a linear kernel of size \(74k+4\) was developed based on 8 reduction rules. Very recently, by imposing 3 new reduction rules to the previous kernelization, the linear kernel was improved to 58k. We aim to simplify the kernelization, yet obtain an improved kernel. In particular, we study 7 reduction rules which lead to a linear kernel of size \({42k+24}\).


  1. 1.
    Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and approximability of maximal strip recovery. Theor. Comput. Sci. 440–441, 14–28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: hardness and approximation algorithms. J. Discret. Algorithms 19, 1–22 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. J. Comb. Optim. 18(3), 307–318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS, vol. 4645, pp. 277–288. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74126-8_26 CrossRefGoogle Scholar
  5. 5.
    Hu, S., Li, W., Wang, J.: An improved kernel for the complementary maximal strip recovery problem. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 601–608. Springer, Cham (2015). doi: 10.1007/978-3-319-21398-9_47 CrossRefGoogle Scholar
  6. 6.
    Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms for the complementary maximal strip recovery problem. J. Comb. Optim. 23(4), 493–506 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jiang, H., Zhu, B.: A linear kernel for the complementary maximal strip recovery problem. J. Comput. Syst. Sci. 80(7), 1350–1358 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jiang, M.: Inapproximability of maximal strip recovery. Theor. Comput. Sci. 412(29), 3759–3774 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kowalik, L., Pilipczuk, M., Suchan, K.: Towards optimal kernel for connected vertex cover in planar graphs. Discret. Appl. Math. 161(7–8), 1154–1161 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lin, G., Goebel, R., Li, Z., Wang, L.: An improved approximation algorithm for the complementary maximal strip recovery problem. J. Comput. Syst. Sci. 78(3), 720–730 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press Inc., Oxford (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, J., Yang, Y., Guo, J., Chen, J.: Planar graph vertex partition for linear problem kernels. J. Comput. Syst. Sci. 79(5), 609–621 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, L., Zhu, B.: On the tractability of maximal strip recovery. J. Comput. Biol. 17(7), 907–914 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, Y.: Towards optimal kernel for edge-disjoint triangle packing. Inf. Process. Lett. 114(7), 344–348 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zheng, C.: Pathgroups, a dynamic data structure for genome reconstruction problems. Bioinformatics 26(13), 1587–1594 (2010)CrossRefGoogle Scholar
  16. 16.
    Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and the history of the hemiascomycetes. In: ISMB, pp. 96–104 (2008)Google Scholar
  17. 17.
    Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(4), 515–522 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wenjun Li
    • 1
  • Haiyan Liu
    • 1
  • Jianxin Wang
    • 2
    Email author
  • Lingyun Xiang
    • 1
  • Yongjie Yang
    • 2
  1. 1.Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on TransportationChangsha University of Science and TechnologyChangshaChina
  2. 2.School of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations