Skip to main content

Madden-Julian Oscillation: Observations and Mechanisms

  • Chapter
  • First Online:
Fundamentals of Tropical Climate Dynamics

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

In this chapter, the observed features of the Madden–Julian Oscillation (MJO) are first introduced, followed by the discussions of physical mechanisms responsible for the eastward propagation and initiation of MJO. Next the boreal summer intraseasonal oscillation (BSISO) is described, with a special emphasis on the mechanisms responsible for its northward propagation over the monsoon regions. Finally the interaction of MJO or BSISO with higher-frequency motions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiyyer AR, Molinari J (2003) Evolution of mixed Rossby-gravity waves in idealized MJO environments. J Atmos Sci 60:2837–2855

    Article  Google Scholar 

  • Batstone CP, Matthews AJ, Stevens DP (2005) Coupled ocean-atmosphere interactions between the Madden-Julian oscillation and synoptic-scale variability over the warm pool. J Clim 18:2004–2020

    Article  Google Scholar 

  • Benedict J, Randall DA (2007) Observed characteristics of the MJO relative to maximum rainfall. J Atmos Sci 64:2332–2354

    Article  Google Scholar 

  • Biello JA, Majda AJ (2005) A new multi-scale model for the Madden-Julian oscillation. J Atmos Sci 62:1694–1721

    Article  Google Scholar 

  • Biello JA, Majda AJ, Moncrieff MW (2007) Meridional momentum flux and super-rotation in the multi-scale IPESD MJO model. J Atmos Sci 64:1636–1651

    Article  Google Scholar 

  • Chao WC, Chen B (1999) On the role of surface friction in tropical intraseasonal oscillation. In: Preprints, 23-d conference on Hurricanes and Tropical Meteorology, vol II. American Meteorological Society, Dallas, TX, pp 815–818

    Google Scholar 

  • Chen T-C, Murakami M (1988) The 30–50-day variation of convective activity over the western Pacific Ocean with the emphasis on the northwestern region. Mon Weather Rev 116:892–906

    Article  Google Scholar 

  • Dickinson M, Molinari J (2002) Mixed Rossby-gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J Atmos Sci 59:2183–2195

    Article  Google Scholar 

  • Emanuel KA (1987) An air–sea interaction model of intraseasonal oscillations in the tropics. J Atmos Sci 44:2324–2340

    Article  Google Scholar 

  • Emanuel KA (1994) Atmospheric convection. Oxford University Press, New York, 580 pp

    Google Scholar 

  • Flatau MK, Flatau P, Phoebus P et al (1997) The feedback between equatorial convection and local radiative and evaporative processes: the implications for intraseasonal oscillations. J Atmos Sci 54:2373–2386

    Article  Google Scholar 

  • Frank WM, Roundy PE (2006) The role of tropical waves in tropical cyclogenesis. Mon Weather Rev 134:2397–2417

    Article  Google Scholar 

  • Gadgil S, Srinivasan J (1990) Low frequency variation of tropical convergence zones. Meteorol Atmos Phys 44:119–132

    Article  Google Scholar 

  • Gautier C, DiJuli B (1990) Cloud effect on air-sea interactions during the 1979 Indian summer monsoon as studied from satellite observations. Meteorol Atmos Phys 44:119–132

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Hartmann DL, Maloney ED (2001) The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J Atmos Sci 58:2559–2570

    Article  Google Scholar 

  • Hartmann DL, Michelsen ML (1989) Intraseasonal periodicities in Indian rainfall. J Atmos Sci 46:2838–2862

    Article  Google Scholar 

  • Hartmann DL, Michelsen ML, Kelein SA (1992) Seasonal variations of tropical intraseasonal oscillations: a 20–25-day oscillation in the western Pacific. J Atmos Sci 49:1277–1289

    Article  Google Scholar 

  • Hendon HH, Glick J (1997) Intraseasonal air-sea interaction in the tropical Indian and Pacific oceans. J Clim 10:647–661

    Article  Google Scholar 

  • Hendon HH, Liebmann B (1994) Organization of convection within the Madden-Julian oscillation. J Geophys Res 99:8073–8083

    Article  Google Scholar 

  • Hendon HH, Salby ML (1994) The life cycle of Madden-Julian oscillation. J Atmos Sci 51:2207–2219

    Article  Google Scholar 

  • Holton JR (1992) An introduction to dynamic meteorology, Third edn. Academic Press, San Diego, p 511

    Google Scholar 

  • Hsu P-C, Li T (2011) Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J Clim 24:942–961

    Article  Google Scholar 

  • Hsu P-C, Li T (2012) Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation. J Clim 25:4914–4931

    Article  Google Scholar 

  • Hsu H-H, Weng C-H (2001) Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: structure and mechanism. J Clim 14:3834–3850

    Article  Google Scholar 

  • Hsu H-H, Hoskins BJ, Jin F-F (1990) The 1985/86 intraseasonal oscillation and the role of the extratropics. J Atmos Sci 47:823–839

    Article  Google Scholar 

  • Hsu P-C, Li T, Tsou C-H (2011) Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J Clim 24:927–941

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Jiang X et al (2015) Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J Geophys Res Atmos 120:4718–4748

    Article  Google Scholar 

  • Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418

    Article  Google Scholar 

  • Jones C, Weare BC (1996) The role of low-level moisture convergence and ocean latent heat fluxes in the Madden-Julian oscillation: an observational analysis using ISCCP data and ECMWF analyses. J Clim 9:3086–3140

    Article  Google Scholar 

  • Jones C, Waliser DE, Lau KM, Stern W (2004a) The Madden- Julian oscillation and its impact on northern hemisphere weather predictability. Mon Weather Rev 132:1462–1471

    Article  Google Scholar 

  • Jones C, Waliser DE, Lau KM, Stern W (2004b) Global occurrences of extreme precipitation and the Madden-Julian oscillation: observations and predictability. J Clim 17:4575–4589

    Article  Google Scholar 

  • Khouider B, Majda AJ (2006) A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J Atmos Sci 63:1308–1323

    Article  Google Scholar 

  • Kikuchi K, Takayabu YN (2004) The development of organized convection associated with the MJO during TOGA COARE IOP: trimodal characteristics. Geoph Res Lett 31:L10101

    Google Scholar 

  • Khouider B, Majda AJ (2007) A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J Atmos Sci 64:381–400

    Article  Google Scholar 

  • Knutson TR, Weickmann KM (1987) 30–60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon Weather Rev 115:1407–1436

    Article  Google Scholar 

  • Krishnamurti TN, Chakraborty DR, Cubukcu N et al (2003) A mechanism of the MJO based on interactions in the frequency domain. Q J R Meteorol Soc 129:2559–2590

    Article  Google Scholar 

  • Lau K-M, Chan PH (1986) Aspects of the 40–50-day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon Weather Rev 114:1354–1367

    Article  Google Scholar 

  • Lau K-H, Lau N-C (1990) Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon Weather Rev 118:1888–1993

    Article  Google Scholar 

  • Lau K-M, Peng L (1987) Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: The basic theory. J Atmos Sci 44:950–972

    Article  Google Scholar 

  • Lau K-M, Sui C-H (1997) Mechanisms of short-term sea surface temperature regulation: observations during TOGA-COARE. J Clim 10:465–472

    Article  Google Scholar 

  • Li T (2014) Recent advance in understanding the dynamics of the Madden-Julian oscillation. J Meteorol Res 28:1–33

    Google Scholar 

  • Li T, Wang B (1994a) The influence of sea surface temperature on the tropical intraseasonal oscillation: a numerical study. Mon Weather Rev 122:2349–2362

    Article  Google Scholar 

  • Li T, Wang B (1994b) A thermodynamic equilibrium climate model for monthly mean surface winds and precipitation over the tropical Pacific. J Atmos Sci 51:1372–1385

    Article  Google Scholar 

  • Li T, Wang B (2005) A review on the western North Pacific monsoon: synoptic-to-interannual variability. Terr Atmos Ocean Sci 16:285–314

    Article  Google Scholar 

  • Li T, Tam F, Fu X, Zhou T, Zhu W (2008) Causes of the intraseasonal SST variability in the tropical Indian Ocean. Atmos Ocean Sci Lett 1:18–23

    Google Scholar 

  • Li T, Zhao C, Hsu P-C, Nasuno T (2015) MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J Clim 28:2121–2135

    Article  Google Scholar 

  • Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian oceans and the Madden-Julian oscillation. J Meteorol Soc Jpn 72:401–412

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436

    Article  Google Scholar 

  • Liu F, Wang B (2012a) A model for the interaction between the 2-day waves and moist Kelvin waves. J Atmos Sci 69:611–625

    Article  Google Scholar 

  • Liu F, Wang B (2012b) Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden-Julian oscillation: a theoretical model study. Clim Dyn. doi:10.1007/s00382-011-1281-0

  • Madden RA, Julian PR (1971) Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Majda AJ, Biello JA (2004) A multiscale model for tropical intraseasonal oscillations. Proc Natl Acad Sci 10:4736–4741

    Article  Google Scholar 

  • Majda AJ, Stechmann SN (2009) A simple dynamical model with features of convective momentum transport. J Atmos Sci 66:373–392

    Article  Google Scholar 

  • Maloney ED (2009) The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J Clim 22:711–729

    Article  Google Scholar 

  • Maloney ED, Dickinson MJ (2003) The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J Atmos Sci 60:2153–2168

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (1998) Frictional moisture convergence in a composite life cycle of the Madden-Julian oscillation. J Clim 11:2387–2403

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2000a) Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J Clim 13:1451–1460

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2000b) Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science 287:2002–2004

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2001) The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J Atmos Sci 58:2545–2558

    Article  Google Scholar 

  • Moskowitz BM, Bretherton CS (2000) An analysis of frictional feedback on a moist equatorial Kelvin mode. J Atmos Sci 57:2188–2206

    Article  Google Scholar 

  • Murakami T (1980) Empirical orthogonal function analysis of satellite-observed outgoing longwave radiation during summer. Mon Weather Rev 108:205–222

    Article  Google Scholar 

  • Nakazawa T (1988) Tropical super clusters within intraseasonal variations over the western Pacific. J Meteorol Soc Jpn 66:823–839

    Article  Google Scholar 

  • Neelin JD, Held IM, Cook KH (1987) Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J Atmos Sci 44:2341–2348

    Article  Google Scholar 

  • Nitta T (1987) Convective activities in the tropical western pacific and their impact on the northern-hemisphere summer circulation. J Meteorol Soc Jpn 65:373–390

    Article  Google Scholar 

  • Shinoda T, Hendon HH (1998) Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian oceans. J Clim 11:2668–2685

    Article  Google Scholar 

  • Sobel AH, Maloney ED (2000) Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys Res Lett 27:1739–1742

    Article  Google Scholar 

  • Sobel AH, Maloney ED (2013) Moisture modes and the eastward propagation of the MJO. J Atmos Sci 70:187–192

    Article  Google Scholar 

  • Sperber KR (2003) Propagation and the vertical structure of the Madden-Julian oscillation. Mon Weather Rev 131:3018–3037

    Article  Google Scholar 

  • Straub KH, Kiladis GN (2003) Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon Weather Rev 131:945–960

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Takayabu YN, Nitta T (1993) 3–5 day period disturbances coupled with convection over the tropical Pacific Ocean. J Meteorol Soc Jpn 71:221–246

    Article  Google Scholar 

  • Vecchi GA, Harrison DE (2002) Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J Clim 15:1485–1493

    Article  Google Scholar 

  • Wang B (1988a) Dynamics of tropical low frequency waves: an analysis of moist Kelvin waves. J Atmos Sci 45:2051–2065

    Article  Google Scholar 

  • Wang B (1988b) Comments on “An air-sea interaction model of intraseasonal oscillation in the tropics”. J Atmos Sci 45:3521–3525

    Article  Google Scholar 

  • Wang B (2006) Theory, chapter 10 in tropical intraseasonal oscillation in the atmosphere and ocean, Lau WK-M, Waliser DE (eds). Praxis Publishing.

    Google Scholar 

  • Wang B, Li T (1993) A simple tropical atmospheric model of relevance to short-term climate variation. J Atmos Sci 50:260–284

    Article  Google Scholar 

  • Wang B, Li T (1994) Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J Atmos Sci 51:1386–1400

    Article  Google Scholar 

  • Wang B, Liu F (2011) A model for scale interaction in the Madden-Julian oscillation. J Atmos Sci 68:2524–2536

    Article  Google Scholar 

  • Wang B, Rui H (1990) Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial β-plane. J Atmos Sci 47:397–413

    Article  Google Scholar 

  • Wang B, Xie X (1998) Coupled modes of the warm pool climate system part I: The role of Air-Sea interaction in maintaining Madden-Julian oscillation. J Clim 11:2116–2135

    Article  Google Scholar 

  • Wu MLC, Schubert SD, Suarez MJ et al (2005) Seasonality and meridional propagation of the MJO. J Clim 19:1901–1921

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

  • Yasunari T (1979) Cloudiness fluctuation associated with the northern hemisphere summer monsoon. J Meteorol Soc Jpn 57:227–242

    Article  Google Scholar 

  • Yasunari T (1980) A quasi-stationary appearance of 30–40 day period in the cloudiness fluctuation during summer monsoon over India. J Meteorol Soc Jpn 58:225–229

    Article  Google Scholar 

  • Zhao C-B, Li T, Zhou T (2013) Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J Clim 26:291–307

    Article  Google Scholar 

  • Zhou C, Li T (2010) Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J Clim 23:5738–5754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Li, T., Hsu, Pc. (2018). Madden-Julian Oscillation: Observations and Mechanisms. In: Fundamentals of Tropical Climate Dynamics. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-59597-9_3

Download citation

Publish with us

Policies and ethics