Skip to main content

Complex Fluids and Rheometry in Microfluidics

  • Chapter
  • First Online:

Abstract

Complex fluids are everywhere, literally, just need to look around you, or even closer, inside your own body. These fluids are named complex because when they flow, they do not hold a linear relationship between the rate of deformation and the stress tensors, and consequently the Newton’s law of viscosity is not suitable for them. In this chapter, the importance of the performing a rheological characterization and choosing the right constitutive model is highlighted, in particular when flowing at microscale, where the elastic behavior of these complex fluids is enhanced even at very small Reynolds numbers. Additionally, the potential of microfluidics as a platform for performing rheological characterizations is tackled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.rheosense.com Cited 30 April 2017.

  2. 2.

    http://www.formulaction.com Cited 30 April 2017.

  3. 3.

    http://www.rheosense.com.

  4. 4.

    http://www.fluidan.com Cited 30 April 2017.

References

  1. Alves, M. A. (2008). Design of a Cross-Slot flow channel for extensional viscosity measurements. AIP Conference Proceedings, 1027(1), 240–242.

    Article  Google Scholar 

  2. Alves, M. A. (2011). Design of optimized microfluidic devices for viscoelastic fluid flow. Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo. 2: 474–477.

    Google Scholar 

  3. Baird, D. G. (2008). First normal stress difference measurements for polymer melts at high shear rates in a slit-die using hole and exit pressure data. Journal of Non-Newtonian Fluid Mechanics, 148, 13–23.

    Article  MATH  Google Scholar 

  4. Baek, S. G. (2010). Micro rheometer for measuring flow viscosity and elasticity for micron sample volumes. US Patent 7,770,436.

    Google Scholar 

  5. Bandalusena, H. C. H., Zimmerman, W. C., & Rees, J. M. (2009). Microfluidic rheometry of a polymer solution by micron resolution particle image velocimetry: A model validation study. Measurement Science and Technology, 20(11), 115404.

    Article  Google Scholar 

  6. Bandulasena, H. C. H., Zimmerman, W. B., & Rees, J. M. (2010). Creeping flow analysis of an integrated microfluidic device for rheometry. Journal of Non-Newtonian Fluid Mechanics, 165, 1302–1308.

    Article  MATH  Google Scholar 

  7. Bandulasena, H. C. H., Zimmerman, W. B., & Rees, J. M. (2010). Rheometry of non-Newtonian polymer solution by microchannel pressure driven flow. Applied Rheology, 20, 55608.

    Google Scholar 

  8. Barnes H. A., Hutton J. F., & Walters, K. (1993). An introduction to Rheology. Rheology Series (Vol. 3). Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  9. Bhattacharjee, P. K., McDonnell, A. G., Prabhakar, R., Yeo, L. Y., & Friend, J. (2011). Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting. New Journal of Physics, 13, 023005.

    Article  Google Scholar 

  10. Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymer liquids. Volume 1 - Fluid mechanics (2 edn). New York: Wiley.

    Google Scholar 

  11. Bruus, H. (2007). Theoretical microfluidics. Oxford University Press.

    Google Scholar 

  12. Campo-Deaño, L., & Clasen, C. (2010). The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments. Journal of Non-Newtonian Fluid Mechanics, 165(2324), 16881699.

    Google Scholar 

  13. Campo-Deaño, L., Galindo-Rosales, F. J., Oliveira, M. S. N., Alves, M. A., & Pinho, F. T. (2011). Flow of low viscosity boger fluids through a microfluidic hyperbolic contraction. Journal of non-Newtonian Fluid Mechanics, 166(21–22), 1286–1296.

    Article  MATH  Google Scholar 

  14. Campo-Deaño, L., Galindo-Rosales, F. J., Pinho, F. T., Alves, M. A., & Oliveira, M. S. N. (2012). Nanogel formation of polymer solutions flowing through porous media. Soft Matter, 8(24), 6445–6453.

    Article  Google Scholar 

  15. Campo-Deaño, L., Dullens, R. P. A., Aarts, D. G. A. L., Pinho, F. T., & Oliveira, M. S. N. (2013). Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics, 7, 034102.

    Article  Google Scholar 

  16. Christopher, G. F., Yoo, J. M., Dagalakis, N., Hudson, S. D., & Migler, K. B. (2010). Development of a MEMS based dynamic rheometer. Lab Chip, 10, 2749–2757.

    Article  Google Scholar 

  17. Cicuta, P., & Donald, A. M. (2007). Microrheology: a review of the method and applications. Soft Matter, 3, 1449–1455.

    Article  Google Scholar 

  18. Clasen, C., & McKinley, G. H. (2004). Gap-dependent microrheometry of complex liquids. Journal of non-Newtonian Fluid Mechanics, 124(1), 1–10.

    Article  MATH  Google Scholar 

  19. Colin, A., Cristobal, G., Guillot, P., & Joanicot, M. (2012). Method and installation for determining rheological characteristics of a fluid, and corresponding identifying method. US Patent 8,104,329.

    Google Scholar 

  20. Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, 619–622.

    Article  Google Scholar 

  21. Crocker, J. C., Valentine, M. T., Weeks, E. R., Gisler, T., Kaplan, P. D., Yodh, A. G., et al. (2000). Two-point microrheology of inhomogeneous soft materials. Physical Review Letters, 85, 888.

    Article  Google Scholar 

  22. Dealy, J. M. (2010). Weissenberg and deborah numbers their definition and use. Rheology Bulletin (The Society of Rheology), 79(2), 14–18.

    Google Scholar 

  23. Del Giudice, F., D’Avino, G., Greco, F., De Santo, I., Nettiab, P. A., & Maffettone, P. L. (2015). Rheometry-on-a-chip: measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab on a Chip, 15, 783–792.

    Article  Google Scholar 

  24. Dinic, J., Zhang, Y., Jimenez, L. N., & Sharma, V. (2015). Extensional relaxation times of dilute, aqueous polymer solutions. ACS Macro Letter, 4, 804808.

    Google Scholar 

  25. Erni, P., Varagnat, M., Clasen, C., Crest, J., & McKinley, G. H. (2011). Microrheometry of sub-nanolitre biopolymer samples: non-newtonian flow phenomena of carnivorous plant mucilage. Soft Matter, 7, 10889.

    Article  Google Scholar 

  26. Ewoldt, R. H., Johnston, M. T., & Caretta, L.M. (2015). Complex fluids in biological systems: experiment, theory, and computation. In: Spagnolie, S.E., (ed.) Chapter 6: experimental challenges of shear rheology: how to avoid bad data. New York: Springer.

    Google Scholar 

  27. Formulaction (2017). Fluidicam\(^{\text{Rheo}}\) Technical specifications.

    Google Scholar 

  28. Fuller, G. G., & Verman, J. (2011). Editorial: dynamics and rheology of complex fluid-fluid interfaces. Soft Matter, 7(17), 7583–7585.

    Article  Google Scholar 

  29. Fuller, G. G., & Verman, J. (2012). Complex fluid-fluid interfaces: rheology and structure. Annual Review of Chemical and Biomolecular Engineering, 3(1), 519–543.

    Article  Google Scholar 

  30. Galambos, P., & Foster, F. (1998). An optical micro-fluidic viscometer. DSC-Vol. 66, Micro-Electro-Mechanicical System (MEMS). ASME International Mechanical Engineering Congress and Exposition, 15–20, Anaheim, CA.

    Google Scholar 

  31. Galindo-Rosales, F. J., Campo-Deaño, L., Pinho, F. T., van Bokhorst, E., Hamersma, P. J., Oliveira, M. S. N., et al. (2012). Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media. Microfluidics and Nanofluidics, 12(1), 485–498.

    Article  Google Scholar 

  32. Galindo-Rosales, F. J., Alves, M. A., & Oliveira, M. S. N. (2013). Microdevices for extensional rheometry of slow viscosity elastic liquids: a review. Microfluidics Nanofluidics, 14, 1–19.

    Article  Google Scholar 

  33. Galindo-Rosales, F. J., Campo-Deaño, L., Sousa, P. C., Ribeiro, V. M., Oliveira, M. S. N., Alves, M. A., et al. (2014). Viscoelastic instabilities in micro-scale flows. Experimental Thermal and Fluid Science, 59, 128139.

    Article  Google Scholar 

  34. Galindo-Rosales, F. J., Oliveira, M. S. N., & Alves, M. A. (2014). Optimized cross-slot microdevices for homogeneous extension. RSC Advances, 4(15), 7799–7804.

    Article  Google Scholar 

  35. Galindo-Rosales, F. J., Segovia-Gutirrez, J. P., Pinho, F. T., Alves, M. A., & de Vicente, J. (2015). Extensional rheometry of magnetic dispersions. Journal of Rheology, 59(1), 193–209.

    Article  Google Scholar 

  36. Galindo-Rosales, F. J., Martínez-Aranda, S., & Campo-Deaño, L. (2015). CorkSTF\(\mu \)fluidics - A novel concept for the development of eco-friendly light-weight energy absorbing composites. Materials & Design, 82, 326–334.

    Article  Google Scholar 

  37. Galindo-Rosales, F. J., & Campo-Deaño, L. (2016). Composite layer material for dampening external load, obtaining process, and uses thereof. WO Patent App. PCT/IB2015/057,399.

    Google Scholar 

  38. Galindo-Rosales, F. J. (2016). Complex fluids in energy dissipating systems. Applied Sciences, 6(8), 206.

    Article  Google Scholar 

  39. Groisman, A., & Steinberg, V. (2001). Efficient mixing at low Reynolds numbers using polymer additives. Nature, 410, 905–908.

    Article  Google Scholar 

  40. Groisman, A., Enzelberger, M., & Quake, S. R. (2003). Microfluidic memory and control devices. Science, 300(5621), 955–958.

    Article  Google Scholar 

  41. Groisman, A., & Quake, S. R. (2004). A microfluidic rectifier: anisotropic flow resistance at low reynolds numbers. Physical Review Letters, 92(2), 094501.

    Article  Google Scholar 

  42. Guillot, P., Panizza, P., Salmon, J.-B., Joanicot, M., & Colin, A. (2006). Viscosimeter on a microfluidic chip. Langmuir, 22, 6438–6445.

    Article  Google Scholar 

  43. Guillot, P., Moulin, T., Kotitz, R., Guirardel, M., Dodge, A., Joanicot, M., et al. (2008). Towards a continuous microfluidic rheometer. Microfluidics Nanofluidics, 5, 619–630.

    Article  Google Scholar 

  44. Hachmann, P., & Meissner, J. (2003). Rheometer for equibiaxial and planar elongations of polymer melts. Journal of Rheology, 47(4), 989–1010.

    Article  Google Scholar 

  45. Hardy, B. S., Uechi, K., Zhen, J., & Kavehpour, H. P. (2009). The deformation of flexible PDMS microchannels under a pressure driven flow. Lab on a Chip, 9, 935–938.

    Article  Google Scholar 

  46. Haward, S. J., Odell, J. A., Berry, M., & Hall, T. (2011). Extensional rheology of human saliva. Rheologica Acta, 50(11), 869–879.

    Article  Google Scholar 

  47. Haward, S. J., Sharma, V., & Odell, J. A. (2011). Extensional opto-rheometry with biofluids and ultra-dilute polymer solutions. Soft Matter, 7(21), 9908–9921.

    Article  Google Scholar 

  48. Haward, S. J., Oliveira, M. S. N., Alves, M. A., & McKinley, G. H. (2012). Optimized cross-slot flow geometry for microfluidic extensional rheometry. Physical Review Letters, 109(12), 128301.

    Article  Google Scholar 

  49. Haward, S. J. (2016). Microfluidic extensional rheometry using stagnation point flow. Biomicrofluidics, 10(4), 043401.

    Article  Google Scholar 

  50. Larson, R. G. (1999). The structure and rheology of complex fluids. New York, United States: Oxford University Press.

    Google Scholar 

  51. Macosko, C. W. (1994). Rheology: principles, measurements, and applications. United States: Wiley-VCH Inc.

    Google Scholar 

  52. Mason, T. G., & Weitz, D. A. (1995). Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters, 74, 1250.

    Article  Google Scholar 

  53. Mason, T. G. (2000). Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheologica Acta, 39, 371–378.

    Article  Google Scholar 

  54. Mewis, J., & Wagner, N. J. (2012). Colloidal suspension rheology. United Kindom: Cambridge University Press.

    MATH  Google Scholar 

  55. Mezger, T. G. (2002). The Rheology Handbook: for user of rotational and oscillatory rheometers. Vincentz Verlag, Germany.

    Google Scholar 

  56. Morrison, F. A. (2001). Understanding rheology. United States: Oxford University Press.

    MATH  Google Scholar 

  57. Nelson, W. C., Kavehpour, H. P., & Kim, C. J. (2011). A miniature capillary breakup extensional rheometer by electrostatically assisted generation of liquid filaments. Lab Chip, 11, 2424–243.

    Article  Google Scholar 

  58. Nguyen, N.-T. (2012). Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics, 12(1), 1–16.

    Article  MathSciNet  Google Scholar 

  59. Ober, T. J., Haward, S. J., Pipe, C. J., Soulages, J., & McKinley, G. H. (2013). Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheologica Acta, 52(6), 529–546.

    Article  Google Scholar 

  60. Official symbols and nomenclature of the society of rheology (2013). Journal of Rheology 57(4): 1047–1055.

    Google Scholar 

  61. Okkels, F. (2012). A flow measurement device and method. WO Patent App. PCT/DK2012/050,21.

    Google Scholar 

  62. Okkels, F., Oestergard, A.L., & Mohammadifar, M.A. (2017). Novel method for on-line rheology measurement in manufacturing of non-Newtonian liquids. Annual Transactions of the Nordic Rheology Society (Vol. 25).

    Google Scholar 

  63. Oliveira, M. S. N., Alves, M. A., Pinho, F. T., & McKinley, G. H. (2007). Viscous flow through microfabricated hyperbolic contractions. Experiments in Fluids, 43(2–3), 437–451.

    Article  Google Scholar 

  64. Oliveira, M. S. N., Rodd, L. E., McKinley, G. H., & Alves, M. A. (2008). Simulations of extensional flow in microrheometric devices. Microfluidics and Nanofluidics, 5, 809–826.

    Article  Google Scholar 

  65. Oliveira, M. S. N., Alves, M. A., & Pinho, F. T. (2011) Transport and mixing in laminar flows: from microfluidics to oceanic currents. Chapter 6: microfluidic flows of viscoelastic fluids. Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  66. Pan, L., & Arratia, P. E. (2013). A high-shear, low Reynolds number microfluidic rheometer. Microfluid Nanofluid, 14, 885894.

    Article  Google Scholar 

  67. Sheng, P., & Wen, W. (2012). Electrorheological Fluids: Mechanisms, Dynamics, and Microfluidics Applications. Annual Review Fluid Mechanics, 44, 14374.

    Article  MathSciNet  MATH  Google Scholar 

  68. Pipe, C., Majmudar, T. S., & McKinley, G. H. (2008). High shear rate viscometry. Rheologica Acta, 47(5), 621–642.

    Article  Google Scholar 

  69. Pipe, C., & McKinley, G. H. (2009). Microfluidic rheometry. Mechanics Research Communications, 36, 110–120.

    Article  Google Scholar 

  70. Poole, R. J. (2012). The Deborah and Weissenberg numbers. British Society of Rheology, Rheology Bulletin, 53(2), 32–39.

    MathSciNet  Google Scholar 

  71. Regev, O., Vandebril, S., Zussman, E., & Clasen, C. (2010). The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer, 51, 2611–2620.

    Article  Google Scholar 

  72. Reynaert, S., Brooks, C., Moldenaers, P., Vermant, J., & Fuller, G. G. (2008). Analysis of the magnetic rod interfacial stress rheometer. Journal of Rheology, 52(1), 261–285.

    Article  Google Scholar 

  73. Rich, J. P., Lammerding, J., McKinley, G. H., & Doyle, P. S. (2011). Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter, 7(21), 9933–9943.

    Article  Google Scholar 

  74. Rodd, L. E., Scott, T. P., Cooper-White, J. J., & McKinley, G. H. (2005). Capillary break-up rheometry of low-viscosity elastic fluids. Applied Rheology, 15, 1227.

    Google Scholar 

  75. Steinke, M. E., & Kandlikar, S. G. (2006). Single-phase liquid friction factors in microchannels. International Journal of Thermal Sciences, 45, 1073–1083.

    Article  Google Scholar 

  76. Samaniuk, J. R., & Vermant, J. (2014). Micro and macrorheology at fluid-fluid interfaces. Soft Matter, 10(36), 7023–7033.

    Article  Google Scholar 

  77. Schramm, G. (2000). A practical approach to rheology and rheometry. Karlsruhe, Germany: Haake GmbH.

    Google Scholar 

  78. Sharma, V., Haward, S. J., Serdy, J., Keshavarz, B., Soderlund, A., Threlfall-Holmes, P., et al. (2015). The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter, 11, 32513270.

    Google Scholar 

  79. Solomon, D. E., Abdel-Raziq, A., & Vanapalli, S. A. (2016). Rheologica Acta, 55(9), 727–738.

    Google Scholar 

  80. Sousa, P. C., Vega, E. J., Sousa, R. G., Montanero, J. M., & Alves, M. A. (2017). Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions. Rheologica Acta, 56(1), 1120.

    Article  Google Scholar 

  81. Squires, T. M., & Quake, S. R. (2005). Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 77, 977–1026.

    Article  Google Scholar 

  82. Squires, T. M., & Mason, T. G. (2010). Fluid Mechanics of Microrheology. Annual Review of Fluid Mechanics, 42, 413–38.

    Article  Google Scholar 

  83. Steffe, J. F. (1996). Rheological methods in food engineering process (2nd ed.). Press, East Lansing, USA: Freeman.

    Google Scholar 

  84. Tassieri, T., Del Giudice, F., Robertson, E. J., Jain, N., Fries, B., Wilson, R., et al. (2015). Microrheology with optical tweezers: Measuring the relative viscosity of solutions at a glance. Scientific Reports, 5, 8831.

    Article  Google Scholar 

  85. Vadillo, D. C., Tuladhar, T. R., Mulji, A. C., Mackley, M. R., Jung, S., & Hoath, S. D. (2010). The development of the ’Cambridge Trimaster’ filament stretch and break-up device for the evaluation of ink jet fluids. Journal of Rheology, 54(2), 261–282.

    Article  Google Scholar 

  86. Vandebril, S., Franck, A., Fuller, G. G., Moldenaers, P., & Vermant, J. (2010). A double wall-ring geometry for interfacial shear rheometry. Rheologica Acta, 49(2), 131–144.

    Article  Google Scholar 

  87. Verwijlen, T., Leiske, D., Moldenaers, P., Vermant, J., & Fuller, G. G. (2012). Extensional rheometry at interfaces: Analysis of the Cambridge interfacial tensiometer. Journal of Rheology, 56(5), 1225.

    Article  Google Scholar 

  88. Waigh, T. A. (2005). Microrheology of complex fluids. Reports on Progress in Physics, 68(3), 685.

    Article  Google Scholar 

  89. Zimmerman, W. B., Rees, J. M., & Craven, T. J. (2006). The rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction. Microfluidics and Nanofluidics, 2, 481–492.

    Article  Google Scholar 

  90. Zimmerman, W. C., & Rees, J. M. (2013). Rhemeter and rheometric method. WO Patent App. PCT/GB2013/051,089.

    Google Scholar 

  91. Zografos, K., Pimenta, F., Alves, M. A., & Oliveira, M. S. A. (2016). Microfluidic converging/diverging channels optimised for homogeneous extensional deformation. Biomicrofluidics, 10, 043508.

    Article  Google Scholar 

Download references

Acknowledgements

F.J. Galindo-Rosales would like to acknowledge the financial support from FCT, COMPETE and FEDER through grant IF/00190/2013 and project IF/00190/2013/CP1160/CT 0003. The author would also like to thank Formulaction and Fluidan for fruitful discussion about their products, and for graciously providing the pictures used in Figs. 1.6, 1.7, and 1.10, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Galindo-Rosales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Galindo-Rosales, F.J. (2018). Complex Fluids and Rheometry in Microfluidics. In: Galindo-Rosales, F. (eds) Complex Fluid-Flows in Microfluidics. Springer, Cham. https://doi.org/10.1007/978-3-319-59593-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59593-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59592-4

  • Online ISBN: 978-3-319-59593-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics