Advertisement

Monitoring of the Thermal Properties of Cement Composites with an Addition of Steel Slag

  • Vojtěch Václavík
  • Milena Kušnerová
  • Tomáš Dvorský
  • Vojtěch Šimíček
  • Jan Valíček
  • Lukáš Gola
  • Marta Harničárová
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 72)

Abstract

This article presents the results of an experimental research dealing with the preparation of cement composites with an addition of steel slag, in order to verify the possibility of using ground steel slag as a suitable admixture into cement composites. The samples of the cement composites were prepared with the following types of cements: Portland cement CEM I 42.5 R, Portland mixed cement CEM II/B-S 32.5 R, blast furnace cement CEM III/A 32.5 N, and mixed cement CEM V/A (S-V) 32.5 R. We have tested the effect of ground steel slag as an admixture, which had been dosed in the amount of 20% of the weight of the cement dose, on the strength parameters (tensile flexural strength and compressive strength) and the thermal properties (coefficient of thermal conductivity λ, specific heat capacity c, and coefficient of thermal diffusivity a). The results of this experimental research have shown that the use of ground steel slag as an admixture in an amount of 20% of the weight of cement in the cement composite will reduce the values of the coefficient of thermal conductivity λ in cements CEM I 42.5 R, CEM II/B-S 32.5 R, and CEM V/A (S-V) 32.5 R and, at the same time, it will not cause a decrease in compressive strength.

Keywords

Cement Admixture Ground steel slag Compressive strength Tensile flexural strength Thermal properties Coefficient of thermal conductivity 

Notes

Acknowledgements

Project Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use. Reg. No. LO1406. SP2016/35—The Use of Steel Slag as an Admixture for the Preparation of Cement Composites.

References

  1. 1.
    Ondova M, Stevulova N (2011) Benefits of coal fly ash utilization in the area of a pavement building. Environ Eng 3:1156–1159Google Scholar
  2. 2.
    Junak J, Stevulova N (2011) Potential of selected industrial wastes in civil engineering applications. SGEM 2011. doi: 10.5593/sgem2011/s20.155
  3. 3.
    Svarla J, Sisol M, Botula J et al (2011) The potential use of fly ash with a high content of unburned carbon in geopolymers. Acta Geodyn Geomater 7:123–132Google Scholar
  4. 4.
    Yang KH, Song JK, Ashour AF et al (2008) Properties of cementless mortars activated by sodium silicate. Constr Build Mater. doi: 10.1016/j.conbuildmat.2007.07.003
  5. 5.
    Xiang XD, Xi JC, Li CH et al (2016) Preparation and application of the cement-free steel slag cementitious material. Constr Build Mater. doi: 10.1016/j.conbuildmat.2016.03.186
  6. 6.
    Tomkova V, Ovcacik P, Vlcek J et al (2012) Potential modification of hydration of alkali activated mixtures from granulated blast furnace slag and fly ash. Ceram Silic 56:168–176Google Scholar
  7. 7.
    Pal SC, Mukherjee A, Pathak SR (2003) Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cem Concr Res. doi: 10.1016/S0008-8846(03)00062-0
  8. 8.
    Vlček J, Drongová L, Topinková M et al (2014) Identification of phase composition of binders from alkali-activated mixtures of granulated blast furnace slag and fly ash. Ceram Silic 56:79–88Google Scholar
  9. 9.
    Václavík V, Dirner V, Dvorský T et al (2012) The use of blast furnace slag. Metallurgy 51:461–464Google Scholar
  10. 10.
    Stevulova N, Vaclavik V, Junak J et al (2008) Utilization possibilities of selected waste kinds in building materials preparing. SGEM 2008 2:193–200Google Scholar
  11. 11.
    Liu K, Wang Z, Jin C et al (2015) An experimental study on thermal conductivity of iron ore sand cement mortar. Constr Build Mater. doi: 10.1016/j.conbuildmat.2015.10.108
  12. 12.
    Demirboǧa R (2003) Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. doi: 10.1016/S0378-7788(02)00052-X
  13. 13.
    Kim KH, Jeon SE, Kim JK et al (2003) An experimental study on thermal conductivity of concrete. Cem Concr Res. doi: 10.1016/S0008-8846(02)00965-1
  14. 14.
    Břenek A, Václavík V, Dvorský T et al (2016) Numerical moisture simulation of redeveloped structures using active materials based on cement composite. Mater Sci Eng Technol. doi: 10.1002/mawe.201600525
  15. 15.
    Břenek A, Václavík V, Dvorský T et al (2014) Built-in moisture process in structure with damaged waterproofing after the application of thermal insulation boards. Adv Mater Res. doi: 10.4028/www.scientific.net/AMR.1020.591
  16. 16.
    EN 197-1 Cement—Part 1: Composition, specifications and conformity criteria for common cementsGoogle Scholar
  17. 17.
    EN 196-1 Methods of testing cement—Part 1: Determination of strengthGoogle Scholar
  18. 18.
    Kusnerova M, Valicek J, Harnicarova M (2014) Measurement of physical properties of polyurethane plaster. Gradevinar 66:899–907Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Vojtěch Václavík
    • 1
    • 2
  • Milena Kušnerová
    • 3
  • Tomáš Dvorský
    • 1
  • Vojtěch Šimíček
    • 1
    • 2
  • Jan Valíček
    • 3
  • Lukáš Gola
    • 3
  • Marta Harničárová
    • 3
  1. 1.Faculty of Mining and GeologyInstitute of Environmental Engineering, VŠB-Techincal University of OstravaOstrava-PorubaCzech Republic
  2. 2.Faculty of Mining and GeologyInstitute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, VŠB-Techincal University of OstravaOstrava-PorubaCzech Republic
  3. 3.Faculty of Mining and GeologyInstitute of Physics, VŠB-Techincal University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations