Abstract
An alternative formulation based on dihedral angles to the molecular distance geometry problem with imprecise distance data is presented. This formulation considers the additional hypothesis of a particular ordering such that all distances \(||x_i-x_j||=d_{ij}\), \(|i-j|<3\), are known. Considering that bond length and angles are given a priori in a protein backbone, there is always at least one of such ordering in instances involving real protein data. This hypothesis reduces by 2/3 the number of variables of the problem and allows us to calculate the derivatives of the standard Cartesian coordinates representation with respect to the dihedral angles. Numerical experiments illustrate the correctness and viability of the proposed formulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atkins, J.F., Gesteland, R.: The 22nd amino acid. (Perspectives: biochemistry). Science 296(5572), 1409–1411 (2002)
Cassioli, A., Günlük, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry. Discret. Appl. Math. 197, 27–41 (2015). doi:10.1016/j.dam.2014.08.035
Crippen, G.M., Havel, T.F., et al.: Distance Geometry and Molecular Conformation, vol. 74. Research Studies Press, Taunton (1988)
Dyson, H.J., Wright, P.E.: Insights into protein folding from NMR. Ann. Rev. Phys. Chem. 47(1), 369–395 (1996). doi:10.1146/annurev.physchem.47.1.369
Hao, B., Gong, W., Ferguson, T.K., James, C.M., Krzycki, J.A., Chan, M.K.: A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296(5572), 1462–1466 (2002). doi:10.1126/science.1069556
Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18(1), 33–51 (2011). doi:10.1111/j.1475-3995.2009.00757.x
Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014). doi:10.1137/120875909
Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15(3), 219–234 (1999). doi:10.1023/a:1008380219900
Murray, G.: Rotation about an arbitrary axis in 3 dimensions (2017). http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/
Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide, vol. 21. Springer, New York (2010). doi:10.1007/978-1-4419-6351-2
Souza, M., Xavier, A.E., Lavor, C., Maculan, N.: Hyperbolic smoothing and penalty techniques applied to molecular structure determination. Oper. Res. Lett. 39(6), 461–465 (2011). doi:10.1016/j.orl.2011.07.007
Souza, M., Lavor, C., Muritiba, A., Maculan, N.: Solving the molecular distance geometry problem with inaccurate distance data. BMC Bioinform. 14(Suppl 9), S7 (2013). doi:10.1186/1471-2105-14-s9-s7
Acknowledgments
The authors are grateful for the support of the Brazilian research agencies CNPq, CAPES, FAPESP, the Federal University of Ceará and the University of Campinas.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Souza, M., Lavor, C., Alves, R. (2017). Modeling the Molecular Distance Geometry Problem Using Dihedral Angles. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-59575-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59574-0
Online ISBN: 978-3-319-59575-7
eBook Packages: Computer ScienceComputer Science (R0)