Skip to main content

Modeling the Molecular Distance Geometry Problem Using Dihedral Angles

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

  • 1956 Accesses

Abstract

An alternative formulation based on dihedral angles to the molecular distance geometry problem with imprecise distance data is presented. This formulation considers the additional hypothesis of a particular ordering such that all distances \(||x_i-x_j||=d_{ij}\), \(|i-j|<3\), are known. Considering that bond length and angles are given a priori in a protein backbone, there is always at least one of such ordering in instances involving real protein data. This hypothesis reduces by 2/3 the number of variables of the problem and allows us to calculate the derivatives of the standard Cartesian coordinates representation with respect to the dihedral angles. Numerical experiments illustrate the correctness and viability of the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkins, J.F., Gesteland, R.: The 22nd amino acid. (Perspectives: biochemistry). Science 296(5572), 1409–1411 (2002)

    Article  Google Scholar 

  2. Cassioli, A., Günlük, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry. Discret. Appl. Math. 197, 27–41 (2015). doi:10.1016/j.dam.2014.08.035

    Article  MathSciNet  MATH  Google Scholar 

  3. Crippen, G.M., Havel, T.F., et al.: Distance Geometry and Molecular Conformation, vol. 74. Research Studies Press, Taunton (1988)

    MATH  Google Scholar 

  4. Dyson, H.J., Wright, P.E.: Insights into protein folding from NMR. Ann. Rev. Phys. Chem. 47(1), 369–395 (1996). doi:10.1146/annurev.physchem.47.1.369

    Article  Google Scholar 

  5. Hao, B., Gong, W., Ferguson, T.K., James, C.M., Krzycki, J.A., Chan, M.K.: A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296(5572), 1462–1466 (2002). doi:10.1126/science.1069556

    Article  Google Scholar 

  6. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18(1), 33–51 (2011). doi:10.1111/j.1475-3995.2009.00757.x

    Article  MathSciNet  MATH  Google Scholar 

  7. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014). doi:10.1137/120875909

    Article  MathSciNet  MATH  Google Scholar 

  8. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15(3), 219–234 (1999). doi:10.1023/a:1008380219900

    Article  MathSciNet  MATH  Google Scholar 

  9. Murray, G.: Rotation about an arbitrary axis in 3 dimensions (2017). http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/

  10. Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide, vol. 21. Springer, New York (2010). doi:10.1007/978-1-4419-6351-2

    Book  MATH  Google Scholar 

  11. Souza, M., Xavier, A.E., Lavor, C., Maculan, N.: Hyperbolic smoothing and penalty techniques applied to molecular structure determination. Oper. Res. Lett. 39(6), 461–465 (2011). doi:10.1016/j.orl.2011.07.007

    Article  MathSciNet  MATH  Google Scholar 

  12. Souza, M., Lavor, C., Muritiba, A., Maculan, N.: Solving the molecular distance geometry problem with inaccurate distance data. BMC Bioinform. 14(Suppl 9), S7 (2013). doi:10.1186/1471-2105-14-s9-s7

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Brazilian research agencies CNPq, CAPES, FAPESP, the Federal University of Ceará and the University of Campinas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Souza, M., Lavor, C., Alves, R. (2017). Modeling the Molecular Distance Geometry Problem Using Dihedral Angles. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics