Skip to main content

Mapping Paratope and Epitope Residues of Antibody Pembrolizumab via Molecular Dynamics Simulation

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

Abstract

Blocking the programmed death receptor 1 (PD-1)/programmed death ligand 1 protein (PD-L1) interaction has come up as a promising cancer immunotherapy. Pembrolizumab is a therapeutic monoclonal antibody targeting PD-1 and received widespread attention. However, the messages for the paratope and epitope residues of pembrolizumab are insufficient. Here molecular dynamics (MD) simulation was used to map epitope on PD-1 to paratope residues on pembrolizumab. A total of twenty-nine key residues were predicted in the PD-1/pembrolizumab interaction. Of the fourteen epitope residues, three (i.e., ASN66, LYS78 and ALA132 on PD-1) were found to play critical roles in the interaction of PD-1 and PD-L1. Therefore, pembrolizumab prevents PD-L1 from interacting with PD-1 through steric hindrance, and the key residues sorted out here were potential hotspots for the optimization of pembrolizumab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couzin-Frankel, J.: Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165), 1432–1433 (2013). doi:10.1126/science.342.6165.1432

    Article  Google Scholar 

  2. Pardoll, D.M.: The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12(4), 252–264 (2012). doi:10.1038/nrc3239

    Article  Google Scholar 

  3. Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., Horton, H.F., Fouser, L., Carter, L., Ling, V., Bowman, M.R., Carreno, B.M., Collins, M., Wood, C.R., Honjo, T.: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192(7), 1027–1034 (2000)

    Article  Google Scholar 

  4. Keir, M.E., Butte, M.J., Freeman, G.J., Sharpe, A.H.: PD-1 and its ligands in tolerance and immunity. Ann. Rev. Immunol. 26, 677–704 (2008). doi:10.1146/annurev.immunol.26.021607.090331

    Article  Google Scholar 

  5. Kono, K.: Current status of cancer immunotherapy. J. Stem Cells Regen. Med. 10(1), 8–13 (2014)

    MathSciNet  Google Scholar 

  6. Callahan, M.K., Postow, M.A., Wolchok, J.D.: Targeting T cell co-receptors for cancer therapy. Immunity 44(5), 1069–1078 (2016). doi:10.1016/j.immuni.2016.04.023

    Article  Google Scholar 

  7. Gershoni, J.M., Roitburd-Berman, A., Siman-Tov, D.D., Tarnovitski Freund, N., Weiss, Y.: Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 21(3), 145–156 (2007)

    Article  Google Scholar 

  8. Lee, J.Y., Lee, H.T., Shin, W., Chae, J., Choi, J., Kim, S.H., Lim, H., Won Heo, T., Park, K.Y., Lee, Y.J., Ryu, S.E., Son, J.Y., Lee, J.U., Heo, Y.S.: Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat. Commun. 7, Article No. 13354 (2016). doi:10.1038/ncomms13354

  9. Moroni, E., Paladino, A., Colombo, G.: The dynamics of drug discovery. Curr. Top. Med. Chem. 15(20), 2043–2055 (2015)

    Article  Google Scholar 

  10. Durrant, J.D., McCammon, J.A.: Molecular dynamics simulations and drug discovery. BMC Biol. 9, 71 (2011). doi:10.1186/1741-7007-9-71

    Article  Google Scholar 

  11. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 27–38 (1996)

    Article  Google Scholar 

  12. Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., Schwede, T.: Protein structure homology modeling using SWISS-MODEL workspace. Nat. Protoc. 4(1), 1–13 (2009)

    Article  Google Scholar 

  13. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L.: SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42(w1), 252–258 (2014)

    Article  Google Scholar 

  14. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005). doi:10.1002/jcc.20289

    Article  Google Scholar 

  15. MacKerell Jr., A.D., Feig, M., Brooks III, C.L.: Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 126(3), 698–699 (2004). doi:10.1021/ja036959e

    Article  Google Scholar 

  16. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998). doi:10.1021/jp973084f

    Article  Google Scholar 

  17. Lexa, K.W., Carlson, H.A.: Protein flexibility in docking and surface mapping. Q. Rev. Biophys. 45(3), 301–343 (2012). doi:10.1017/S0033583512000066

    Article  Google Scholar 

  18. Adcock, S.A., McCammon, J.A.: Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 106(5), 1589–1615 (2006). doi:10.1021/cr040426m

    Article  Google Scholar 

  19. Zak, K.M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., Domling, A., Dubin, G., Holak, T.A.: Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23(12), 2341–2348 (2015). doi:10.1016/j.str.2015.09.010

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31500591) and the Natural Science Foundation of Guangdong Province (Grant No. 2015A030310106). All simulations were supported by the National Super Computer Center in Guangzhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjian Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, W., Liu, G. (2017). Mapping Paratope and Epitope Residues of Antibody Pembrolizumab via Molecular Dynamics Simulation. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics