Constructing Technical Knowledge Organizations from Document Structures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10260)


Semantic Search emerged as the new system paradigm in enterprise information systems. These information systems allow for the problem-oriented and context-aware access of relevant information. Ontologies, as a formal knowledge organization, represent the key component in these information systems, since they enable the semantic access to information. However, very few enterprises already can provide technical ontologies for information integration. The manual construction of such knowledge organizations is a time-consuming and error-prone process. In this paper, we present a novel approach that automatically constructs technical knowledge organizations. The approach is based on semantified document structures and constraints that allow for the simple adaptation to new enterprises and information content.


Concept hierarchies Ontology engineering Document components Information extraction 



The work described in this paper is supported by the German Bundesministerium für Wirtschaft und Energie (BMWi) under the grant ZIM ZF4170601BZ5 “APOSTL: Accessible Performant Ontology Supported Text Learning”.


  1. 1.
    Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: a semantic wiki for knowledge engineering. Appl. Intell. 35(3), 323–344 (2011). CrossRefGoogle Scholar
  2. 2.
    Constantin, A., Peroni, S., Pettifer, S., Shotton, D., Vitali, F.: The document components ontology (DoCO). Semant. Web 7, 167–181 (2015)CrossRefGoogle Scholar
  3. 3.
    Di Iorio, A., Peroni, S., Poggi, F., Vitali, F.: Dealing with structural patterns of XML documents. J. Assoc. Inf. Sci. Technol. 65(9), 1884–1900 (2014)CrossRefGoogle Scholar
  4. 4.
    Groza, T., Handschuh, S., Möller, K., Decker, S.: SALT - semantically annotated LaTeX for scientific publications. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 518–532. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72667-8_37 CrossRefGoogle Scholar
  5. 5.
    Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 700–709. ACM (2003)Google Scholar
  6. 6.
    Isaac, A., Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-based ontology matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC - 2007. LNCS, vol. 4825, pp. 253–266. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76298-0_19 CrossRefGoogle Scholar
  7. 7.
    Şah, M., Wade, V.: Automatic metadata extraction from multilingual enterprise content. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1665–1668. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.denkbares GmbHWürzburgGermany
  2. 2.Institute of Computer ScienceUniversity of WürzburgWürzburgGermany

Personalised recommendations