Advertisement

Named Entity Classification Based on Profiles: A Domain Independent Approach

  • Isabel MorenoEmail author
  • M. T. Romá-Ferri
  • Paloma Moreda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10260)

Abstract

This paper presents a Named Entity Classification system, which uses profiles and machine learning based on [6]. Aiming at confirming its domain independence, it is tested on two domains: general - CONLL2002 corpus, and medical - DrugSemantics gold standard. Given our overall results (CONLL2002, F1 = 67.06; DrugSemantics, F1 = 71.49), our methodology has proven to be domain independent.

Keywords

Named Entity Classification Profile Domain independent 

Notes

Acknowledgments

This paper has been supported by the Spanish Government (TIN2015-65100-R; TIN2015-65136-C02-2-R), Generalitat Valenciana (PROMETEOII/2014/001) and BBVA Foundation (FUNDACIONBBVA2-16PREMIOI).

References

  1. 1.
    Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Mach. Learn. 37(3), 277–296 (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kitoogo, F., Baryamureeba, V.: Towards domain independent named entity recognition. In: Strengthening the Role of ICT in Development, pp. 84–95 (2008)Google Scholar
  3. 3.
    Lopes, L., Vieira, R.: Building and applying profiles through term extraction. In: X Brazilian Symposium in Information and Human Language Technology, Natal, Brazil, pp. 91–100 (2015). https://aclweb.org/anthology/W/W15/W15-5613.pdf
  4. 4.
    Marrero, M., Urbano, J., Sánchez-Cuadrado, S., Morato, J., Gómez-Berbís, J.M.: Named entity recognition: fallacies, challenges and opportunities. Comput. Stan. Interfaces 35(5), 482–489 (2013)CrossRefGoogle Scholar
  5. 5.
    Moreno, I., Moreda, P., Romá-Ferri, M.T.: Reconocimiento de entidades nombradas en dominios restringidos. In: Actas del III Workshop en Tecnologías de la Informática, Alicante, Spain, pp. 41–57 (2012)Google Scholar
  6. 6.
    Moreno, I., Moreda, P., Romá-Ferri, M.T.: An active ingredients entity recogniser system based on profiles. In: Proceedings of 21st International Conference on Applications of Natural Language to Information Systems, pp. 276–284 (2016)Google Scholar
  7. 7.
    Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task. In: Proceedings of the 6th Conference on Natural Language Learning (2002)Google Scholar
  8. 8.
    Tkachenko, M., Simanovsky, A.: Selecting features for domain-independent named entity recognition. In: Proceedings of KONVENS 2012, pp. 248–253 (2012)Google Scholar
  9. 9.
    Vicente, M., Lloret, E.: Exploring flexibility in natural language generation throughout discursive analysis of new textual genres. In: Proceedings of the 2nd International Workshop FETLT (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Isabel Moreno
    • 1
    Email author
  • M. T. Romá-Ferri
    • 2
  • Paloma Moreda
    • 1
  1. 1.Department of Software and Computing SystemsUniversity of AlicanteAlicanteSpain
  2. 2.Department of NursingUniversity of AlicanteAlicanteSpain

Personalised recommendations