Skip to main content

Multiscale Experimental and Computational Investigation of Nature’s Design Principle of Hierarchies in Dental Enamel

  • Chapter
  • First Online:
Biomedical Technology

Abstract

Dental enamel possesses extraordinary mechanical properties due to a complex hierarchical and graded microstructure. In this study, multiscale experimental and computational approaches are employed and combined to study nature’s design principle of the hierarchical structure of bovine enamel for developing bio-inspired advanced ceramics with hierarchical microstructure. Micro-cantilever beam tests are carried out to characterize the mechanical properties from nano- to meso-scale experimentally. In order to understand the relationship between the hierarchical structure and the flaw-tolerance behavior of enamel, a 3D representative volume element (RVE) is used in a numerical analysis to study the deformation and damage process at two hierarchical levels. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by a cohesive zone model. The effect of an initial flaw on the overall mechanical properties is analyzed at different hierarchical levels to understand the superior damage tolerance of dental enamel. Based on the experimental and computational investigation, the role of hierarchical levels on the multiscale design of structure in dental enamel is revealed for optimizing bio-inspired composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fracture is induced in bending experiments in the tensile stress region of the specimen.

  2. 2.

    For more detailed information about specimen fabrication and testing methods, the reader is referred to [6, 7, 34,35,36,37].

References

  1. M. Akao, H. Aoki, K. Kato, Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 16, 809–12 (1981)

    Article  Google Scholar 

  2. S.F. Ang, A. Schulz, R. Pacher Fernandes, G.A. Schneider, Sub-10-micrometer toughening and crack-tip toughness of dental enamel. J. Mech. Behav. Biomed. Mater. 4, 423–432 (2011)

    Article  Google Scholar 

  3. B. Angmar, D. Carlström, J. Glas, Studies on the ultrastructure of dental enamel. J. Ultrastruct. Res. 8, 12–23 (1963)

    Article  Google Scholar 

  4. S. Bargmann, I. Scheider, T. Xiao, E. Yilmaz, G.A. Schneider, N. Huber, Towards bio-inspired engineering materials: modeling and simulation of the mechanical behavior of hierarchical bovine dental structure. Comput. Mater. Sci. 79, 390–401 (2013)

    Article  Google Scholar 

  5. S. Bechtle, S. Habelitz, A. Klocke, T. Fett, G.A. Schneider, The fracture behaviour of dental enamel. Biomaterials 31, 375–84 (2010)

    Article  Google Scholar 

  6. S. Bechtle, H. Özcoban, E.T. Lilleodden, N. Huber, A. Schreyer, M.V. Swain, G.A. Schneider, Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour. J. R. Soc. Interface 9, 74–1265 (2012)

    Article  Google Scholar 

  7. S. Bechtle, H. Özcoban, E.D. Yilmaz, T. Fett, G. Rizzi, E.T. Lilleodden, N. Huber et al., A method to determine site-specific, anisotropic fracture toughness in biological materials. Scr. Mater. 66, 8–515 (2012)

    Article  Google Scholar 

  8. A. Boyde, L. Martin, The microstructure of primate dental enamel, in Food Acquisition and Processing in Primates: The Microstructure of Primate Dental Enamel, ed. by D.J. Chivers, B.A. Wood, A. Bilsborough (Springer, Boston, MA, US, 1984), pp. 341–367

    Google Scholar 

  9. P. Chen, A. Lin, Y. Lin, Y. Seki, A. Stokes, J. Peyras, E. Olevsky et al., Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater. 1, 26–208 (2008)

    Article  Google Scholar 

  10. V. Dusevich, C. Xu, Y. Wang, M.P. Walker, J.P. Gorski, Identification of a protein-containing enamel matrix layer which bridges with the dentine-enamel junction of adult human teeth. Arch. Oral Biol. 57, 1585–1594 (2012)

    Article  Google Scholar 

  11. J.E. Eastoe, Organic matrix of tooth enamel. Nature 187, 411–412 (1960)

    Article  Google Scholar 

  12. J.C. Elliott, Structure, crystal chemistry and density of enamel apatites. Ciba Found. Symp. 205, 54–67; discussion 67–72 (1997)

    Google Scholar 

  13. H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Nat. Acad. Sci. 100, 600–5597 (2003)

    Google Scholar 

  14. H. Gao, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101–137 (2006)

    Article  MATH  Google Scholar 

  15. E. Hamed, I. Jasiuk, Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. J. Mech. Behav. Biomed. Mater. 28, 94–110 (2013)

    Article  Google Scholar 

  16. L.H. He, N. Fujisawa, M.V. Swain, Elastic modulus and stressstrain response of human enamel by nano-indentation. Biomaterials 27, 4388–98 (2006)

    Article  Google Scholar 

  17. L.H. He, M.V. Swain, Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J. Mech. Behav. Biomed. Mater. 1, 18–29 (2008)

    Article  Google Scholar 

  18. J. Holager, Thermogravimetric examination of enamel and dentin. J. Dent. Res. 49, 546–548 (1970)

    Article  Google Scholar 

  19. D.W. Holcomb, R.A. Young, Thermal decomposition of human tooth enamel. Calcif. Tissue Int. 31, 189–201 (1980)

    Article  Google Scholar 

  20. I. Jäger, P. Fratzl, Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746 (2000)

    Article  Google Scholar 

  21. W.V. Koenigswald, W.A. Clemens, Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scanning Microsc. 6, 195–217; discussion 217–218 (1992)

    Google Scholar 

  22. J. Lemaitre, R. Desmorat, Engineering Damage Mechanics—Ductile, Creep, Fatigue and Brittle Failures. Springer, 2005

    Google Scholar 

  23. M.F. Little, F. Casciani, The nature of water in sound human enamel. Arch. Oral Biol. 11, 565–571 (1966)

    Article  Google Scholar 

  24. S. Ma, I. Scheider, S. Bargmann, Continuum damage modeling and simulation of hierarchical dental enamel. Model. Simul. Mater. Sci. Eng. 24, 045014 (2016)

    Article  Google Scholar 

  25. S. Ma, I. Scheider, S. Bargmann, Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel. J. Mech. Behav. Biomed. Mater. 62, 515–533 (2016)

    Article  Google Scholar 

  26. M.C. Maas, E.R. Dumont, Built to last: the structure, function, and evolution of primate dental enamel. Evol. Anthropol. 8, 52–133

    Google Scholar 

  27. J.D. McGuire, M.P. Walker, A. Mousa, Y. Wang, J.P. Gorski, Type VII collagen is enriched in the enamel organic matrix associated with the dentin-enamel junction of mature human teeth. Bone 63, 29–35 (2014)

    Article  Google Scholar 

  28. M. Mirkhalaf, A.K. Dastjerdi, F. Barthelat, Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat. Commun. 5 (2014)

    Google Scholar 

  29. A. Nanci, Ten Cates‘s oral histology: development, structure, and function, 7th edn. (Mosby, St. Louis, Mo, London, 2007)

    Google Scholar 

  30. E. Peña, Prediction of the softening and damage effects with permanent set in fibrous biological materials. J. Mech. Phys. Solids 59, 1808–1822 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. J.M. Rensberger, Pathways to functional differentiation in mammalian enamel, in Development, Function and Evolution of Teeth, ed. by M.F. Teaford, M.M. Smith, M.W.J. Ferguson (Cambridge University Press, Cambridge, New York, 2000), pp. 252–268

    Chapter  Google Scholar 

  32. I. Scheider, T. Xiao, E. Yilmaz, G.A. Schneider, N. Huber, S. Bargmann, Damage modeling of small scale experiments on dental enamel with hierarchical microstructure. Acta Biomater. 15, 244–253 (2015)

    Article  Google Scholar 

  33. M. Setally Azevedo Macena, de M.L. Alencar e Silva Leite, de C. Lima Gouveia, de T.A.S. Lima, P.A.A. Athayde, de F.B. Sousa, A comparative study on component volumes from outer to inner dental enamel in relation to enamel tufts. Arch. Oral Biol. 59, 568–577 (2014)

    Google Scholar 

  34. E.D. Yilmaz, S. Bechtle, H. Özcoban, A. Schreyer, G.A. Schneider, Fracture behavior of hydroxyapatite nanofibers in dental enamel under micropillar compression. Scripta Mater. 68, 7–404 (2013)

    Article  Google Scholar 

  35. E.D. Yilmaz, S. Bechtle, H. Özcoban, J.A. Kieser, M.V. Swain, G.A. Schneider, Micromechanical characterization of prismless enamel in the tuatara, Sphenodon punctatus. J. Mech. Behav. Biomed. Mater. 39, 7–210 (2014)

    Article  Google Scholar 

  36. E.D. Yilmaz, H. Jelitto, G.A. Schneider, Uniaxial compressive behavior of micro-pillars of dental enamel characterized in multiple directions. Acta Biomater. 16, 95–187 (2015)

    Article  Google Scholar 

  37. E.D. Yilmaz, G.A. Schneider, M.V. Swain, Influence of structural hierarchy on the fracture behaviour of tooth enamel. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 373 (2015)

    Google Scholar 

Download references

Acknowledgements

Partial financial support by the ACE-Centre (Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Germany) is gratefully acknowledged. Partial financial support by the German Research Foundation (DFG) via SFB 986 “M\(^3\)” (projects A5, A6) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyun Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ma, S., Scheider, I., Yilmaz, E.D., Schneider, G.A., Bargmann, S. (2018). Multiscale Experimental and Computational Investigation of Nature’s Design Principle of Hierarchies in Dental Enamel. In: Wriggers, P., Lenarz, T. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-59548-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59548-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59547-4

  • Online ISBN: 978-3-319-59548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics