Artificial Textile Reinforced Tubular Aortic Heart Valves—Multi-scale Modelling and Experimental Validation

  • Deepanshu SodhaniEmail author
  • R. Varun Raj
  • Jaan Simon
  • Stefanie Reese
  • Ricardo Moreira
  • Valentine Gesché
  • Stefan Jockenhoevel
  • Petra Mela
  • Bertram Stier
  • Scott E. Stapleton
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 84)


Tissue engineered valvular implants are in development as living and remodelling prostheses to replace damaged native valves. To improve the mechanical properties of the valve, textile is used as a reinforcing scaffold. To predict the behaviour and optimize the structure of such composites, it is necessary to understand the behaviour of the underlying components. The current study seeks to test a multi-scale approach often used in the field of composites to evaluate the behaviour of knitted textile reinforced elastomeric composites. The complex textile structure is divided into simplified models at different levels/structural units. Virtual experiments are conducted at each of these levels and their responses are fit to appropriate isotropic and anisotropic hyperelastic material models. The simulation responses obtained by conducting virtual experiments on the repeating unit cell (RUC) of the composite are then compared with experimental results, resulting in good agreement. After experimental validation, the multi-scale approach is used to predict the behaviour of artificial heart valves.



This research was funded by the Integrated Interdisciplinary Institute of Technology for Medicine (\(\mathrm {I^3TM}\)) of RWTH Aachen University, through the Seed-Fund SF-14-04-08, “Hybrid scaffold for a transcatheter tissue engineered aortic valve”. Additional funding was provided by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement 317512.


  1. 1.
    S. Adanur, T. Liao, 3D modeling of textile composite preforms. Compos. Part B Eng. 29, 787–793 (1998). doi: 10.1016/S1359-8368(98)00036-5 CrossRefGoogle Scholar
  2. 2.
    G. Argento, M. Simonet, C. Oomens, F. Baaijens, Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering. J. Biomech. 45(16), 2893–2898 (2012)CrossRefGoogle Scholar
  3. 3.
    E. Arruda, M. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids (1993)Google Scholar
  4. 4.
    F. Auricchio, M. Conti, A. Ferrara, S. Morganti, A. Reali, Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput. Methods Biomech. Biomed. Eng. (June 2014), 1–9 (2012). doi: 10.1080/10255842.2012.681645
  5. 5.
    B.A. Bednarcyk, B. Stier, J.W. Simon, S. Reese, E.J. Pineda, Meso- and micro-scale modeling of damage in plain weave composites. Compos. Struct. 121, 258–270 (2015). doi: 10.1016/j.compstruct.2014.11.013 CrossRefGoogle Scholar
  6. 6.
    M. Böl, S. Reese, Finite element modelling of rubber-like polymers based on chain statistics. Int. J. Solids Struct. 43(1), 2–26 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    M. Böl, S. Reese, K.K. Parker, E. Kuhl, Computational modeling of muscular thin films for cardiac repair. Comput. Mech. 43(4), 535–544 (2009). doi: 10.1007/s00466-008-0328-5 CrossRefGoogle Scholar
  8. 8.
    G. Cacciola, G. Peters, P. Schreurs, A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33(5), 521–530 (2000a)CrossRefGoogle Scholar
  9. 9.
    G. Cacciola, G.W.M. Peters, F.P.T. Baaijens, A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33(6), 653–658 (2000b). doi: 10.1016/S0021-9290(00)00003-8 CrossRefGoogle Scholar
  10. 10.
    G. Chagnon, M. Rebouah, D. Favier, Hyperelastic energy densities for soft biological tissues: a review. J. Elast. 120(2), 129–160 (2015). doi: 10.1007/s10659-014-9508-z MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D.Y. Cheung, B. Duan, J.T. Butcher, Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin. Biol. Ther. 2598(October), 1–18 (2015). doi: 10.1517/14712598.2015.1051527 Google Scholar
  12. 12.
    A. D’Amore, N. Amoroso, R. Gottardi, C. Hobson, C. Carruthers, S. Watkins, W.R. Wagner, M.S. Sacks, From single fiber to macro-level mechanics: a structural finite-element model for elastomeric fibrous biomaterials. J. Mech. Behav. Biomed. Mater. 39, 146–161 (2014). doi: 10.1016/j.jmbbm.2014.07.016 CrossRefGoogle Scholar
  13. 13.
    J. De Hart, G. Cacciola, P. Schreurs, G. Peters, A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. J. Biomech. 31(7), 629–638 (1998)CrossRefGoogle Scholar
  14. 14.
    J. De Hart, G.W.M. Peters, P.J.G. Schreurs, F.P.T. Baaijens, Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J. Biomech. 37(3), 303–311 (2004). doi: 10.1016/S0021-9290(03)00293-8 CrossRefGoogle Scholar
  15. 15.
    O. Döbrich, T. Gereke, C. Cherif, Modeling the mechanical properties of textile-reinforced composites with a near micro-scale approach. Compos. Struct. 135, 1–7 (2016). doi: 10.1016/j.compstruct.2015.09.010 CrossRefGoogle Scholar
  16. 16.
    M.T. Duong, N.H. Nguyen, M. Staat, Physical response of hyperelastic models for composite materials and soft tissues. Asia Pac. J. Comput. Eng. 2(3), 1–18 (2015). doi: 10.1186/s40540-015-0015-x Google Scholar
  17. 17.
    A.E. Ehret, M. Itskov, A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. J. Mater. Sci. 42(21), 8853–8863 (2007). doi: 10.1007/s10853-007-1812-6 CrossRefGoogle Scholar
  18. 18.
    Y. Fung, K. Fronek, P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol.-Heart Circulatory Physiol. 237(5), H620–H631 (1979)Google Scholar
  19. 19.
    T.C. Gasser, R.W. Ogden, H. Ga, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006). doi: 10.1098/rsif.2005.0073,0312002v1 CrossRefGoogle Scholar
  20. 20.
    W. Goetz, H. Lim, E. Lansac, P. Weber, C. Duran, A temporarily stented, autologous pericardial aortic valve prosthesis. J. Heart Valve Dis. 11(5), 696–702 (2002)Google Scholar
  21. 21.
    B. Hassani, E. Hinton, A review of homogenization and topology optimization i-homogenization theory for media with periodic structure. Comput. Struct. 69(6), 707–717 (1998)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hibbitt, Karlsson, Sorensen, ABAQUS/Standard User’s Manual, vol 1. Hibbitt, Karlsson & Sorensen, 2001Google Scholar
  23. 23.
    G. Holzapfel, Computational biomechanics of soft biological tissue. Encycl. Comput. Mech. 2, 605–635 (2004)Google Scholar
  24. 24.
    G.A. Holzapfel, T.C. Gasser, A viscoelastic model for fiber-reinforced composites at finite stains: continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190(34), 4379–4403 (2001). doi: 10.1016/S0045-7825(00)00323-6 CrossRefGoogle Scholar
  25. 25.
    J.D. Humphrey, Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23(1–2), 1–162 (1994)Google Scholar
  26. 26.
    S. Jana, B.J. Tefft, D.B. Spoon, R.D. Simari, Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 10(7), 2877–2893 (2014). doi: 10.1016/j.actbio.2014.03.014 CrossRefGoogle Scholar
  27. 27.
    Y. Kyosev, Y. Angelova, R. Kovar, 3D Modelling of plain weft knitted structures from compressible yarn. Res. J. Text Appar. 9(1), 88–97 (2005)CrossRefGoogle Scholar
  28. 28.
    C. Lechat, A.R. Bunsell, P. Davies, Tensile and creep behaviour of polyethylene terephthalate and polyethylene naphthalate fibres. J. Mater. Sci. 46(2), 528–533 (2011). doi: 10.1007/s10853-010-4999-x CrossRefGoogle Scholar
  29. 29.
    Y. Li, L. Yang, S. Chen, L. Xu, Three dimensional simulation of weft knitted fabric based on surface mode. Comput. Model. Technol. 18, 52–57 (2014)Google Scholar
  30. 30.
    Y. Li, B. Stier, B. Bednarcyk, J.W. Simon, S. Reese, The effect of fiber misalignment on the homogenized properties of unidirectional fiber reinforced composites. Mech. Mater. 92, 261–274 (2016). doi: 10.1016/j.mechmat.2015.10.002 CrossRefGoogle Scholar
  31. 31.
    H. Lin, X. Zeng, M. Sherburn, A.C. Long, M.J. Clifford, Automated geometric modelling of textile structures. Text Res. J. 82(16), 1689–1702 (2012). doi: 10.1177/0040517511418562
  32. 32.
    M.M. Maurer, B. Röhrnbauer, A. Feola, J. Deprest, E. Mazza, Mechanical biocompatibility of prosthetic meshes: a comprehensive protocol for mechanical characterization. J. Mech. Behav. Biomed. Mater. 40, 42–58 (2014). doi: 10.1016/j.jmbbm.2014.08.005 CrossRefGoogle Scholar
  33. 33.
    E. Mazza, A.E. Ehret, Mechanical biocompatibility of highly deformable biomedical materials. J. Mech. Behav. Biomed. Mater. 48, 100–124 (2015). doi: 10.1016/j.jmbbm.2015.03.023 CrossRefGoogle Scholar
  34. 34.
    R. Moreira, T. Velz, N. Alves, V.N. Gesche, A. Malischewski, T. Schmitz-Rode, J. Frese, S. Jockenhoevel, P. Mela, Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng. Part C: Methods 21(6), 530–540 (2014)CrossRefGoogle Scholar
  35. 35.
    V.P. Nguyen, M. Stroeven, L.J. Sluys, Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J. Multiscale Model. 03(04), 229–270 (2011). doi: 10.1142/S1756973711000509 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Y. Qi, J. Li, L. Liu, Stiffness prediction of multilayer-connected biaxial weft-knitted fabric-reinforced composites. J. Reinf. Plast Compos. (399), 0731684415587, 346 (2015). doi: 10.1177/0731684415587346
  37. 37.
    S. Reese, Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation. Int. J. Solids Struct. 40(4), 951–980 (2003)CrossRefzbMATHGoogle Scholar
  38. 38.
    M. Sherburn, Geometric and mechanical modelling of textiles. ph.d. thesis, university of nottingham, 2007Google Scholar
  39. 39.
    C. Singh, C. Wong, X. Wang, Medical textiles as vascular implants and their success to mimic natural arteries. J. Funct. Biomater. 6(3), 500–525 (2015). doi: 10.3390/jfb6030500 CrossRefGoogle Scholar
  40. 40.
    D. Sodhani, B. Stier, S. Reese, Evaluating the simulation of ideal filler reinforced elastomers using a full field modelling approach. Const. Models Rubber IX, 317 (2015)Google Scholar
  41. 41.
    D. Sodhani, S. Reese, R. Moreira, S. Jockenhoevel, P. Mela, S.E. Stapleton, Multi-scale modelling of textile reinforced artificial tubular aortic heart valves. Meccanica (2016). doi: 10.1007/s11012-016-0479-y Google Scholar
  42. 42.
    S.E. Stapleton, R. Moreira, S. Jockenhoevel, P. Mela, S. Reese, Effect of reinforcement volume fraction and orientation on a hybrid tissue engineered aortic heart valve with a tubular leaflet design. Adv. Model. Simul. Eng. Sci. 2(1), 1–17 (2015)CrossRefGoogle Scholar
  43. 43.
    J.A. Stella, A. D’Amore, W.R. Wagner, M.S. Sacks, On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater. 6(7), 2365–2381 (2010). doi: 10.1016/j.actbio.2010.01.001 CrossRefGoogle Scholar
  44. 44.
    B. Stier, J.W. Simon, S. Reese, Finite element analysis of layered fiber composite structures accounting for the materials microstructure and delamination. Appl. Compos. Mater. 22(2), 171–187 (2015a). doi: 10.1007/s10443-013-9378-8 CrossRefGoogle Scholar
  45. 45.
    B. Stier, J.W. Simon, S. Reese, Numerical and experimental investigation of the structural behavior of a carbon fiber reinforced ankle-foot orthosis. Med. Eng. Phys. 37(5), 505–511 (2015). doi: 10.1016/j.medengphy.2015.02.002
  46. 46.
    S.C. Ugbolue, Y.K. Kim, S.B. Warner, Engineered warp knit auxetic fabrics. J. Text Sci. Eng. 02(01), 1–8 (2012). doi: 10.4172/2165-8064.1000e103
  47. 47.
    C. Ugbolue, SYKKSBW, Geometrical analysis of warp knit auxetic fabrics. J. Text Sci. Eng. 5(3), 1000, 201 (2015). doi: 10.4172/2165-8064.1000201
  48. 48.
    M. Van Lieshout, G. Peters, M. Rutten, F. Baaijens, A knitted, fibrin-covered polycaprolactone scaffold for tissue engineering of the aortic valve. Tissue Eng. 12(3), 7–481 (2006). doi: 10.1089/ten.2006.12.481 CrossRefGoogle Scholar
  49. 49.
    M. Van Lieshout, C.M. Vaz, M.C.M. Rutten, G.W.M. Peters, F.P.T. Baaijens, Electrospinning versus knitting: two scaffolds for tissue engineering of the aortic valve. J. Biomater. Sci. Polym. Edition 17(1–2), 77–89 (2006b). doi: 10.1163/156856206774879153 CrossRefGoogle Scholar
  50. 50.
    S. Vassiliadis, A. Kallivretaki, C. Provatidis, D. Domvoglou, Mechanical analysis of woven fabrics: the state of the art. INTECH Open Access Publisher 2011Google Scholar
  51. 51.
    I. Verpoest, S.V. Lomov, Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis. Compos. Sci. Technol. 65 (15-16 SPEC. ISS.), 2563–2574 (2005). doi: 10.1016/j.compscitech.2005.05.031
  52. 52.
    Y. Wan, B. Sun, B. Gu, Multi-scale structure finite element analyses of damage behaviors of multi-axial warp-knitted composite materials subjected to quasi-static and high strain rate compressions. J. Text Inst. 5000(February 2016), 1–26 (2015). doi: 10.1080/00405000.2015.1070028
  53. 53.
    M. Weber, E. Heta, R. Moreira, V.N. Gesche, T. Schermer, J. Frese, S. Jockenhoevel, P. Mela, Tissue-engineered fibrin-based heart valve with a tubular leaflet design. Tissue Eng. Part C: Methods 20(4), 265–275 (2013)CrossRefGoogle Scholar
  54. 54.
    M. Yeoman, B. Reddy, H. Bowles, A constitutive model for the warp-weft coupled non-linear behavior of knitted textiles with potential use in tissue regenerative implants. J. Biomech. 31(32), 1–21 (2010). doi: 10.1016/j.biomaterials.2010.07.033

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Deepanshu Sodhani
    • 1
    Email author
  • R. Varun Raj
    • 1
  • Jaan Simon
    • 1
  • Stefanie Reese
    • 1
  • Ricardo Moreira
    • 2
  • Valentine Gesché
    • 3
  • Stefan Jockenhoevel
    • 2
    • 3
  • Petra Mela
    • 2
  • Bertram Stier
    • 4
  • Scott E. Stapleton
    • 5
  1. 1.Institute of Applied Mechanics, RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Applied Medical Engineering, Helmholtz-Institute, RWTH Aachen UniversityAachenGermany
  3. 3.Institut Für Textiltechnik, RWTH Aachen UniversityAachenGermany
  4. 4.HypersizerNewport NewsUSA
  5. 5.Department of Mechanical EngineeringUniversity of Massachusetts LowellLowellUSA

Personalised recommendations