Multi-party Business Process Resilience By-Design: A Data-Centric Perspective

  • Pierluigi PlebaniEmail author
  • Andrea Marrella
  • Massimo Mecella
  • Marouan Mizmizi
  • Barbara Pernici
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10253)


Nowadays every business organization operates in ecosystems and cooperation is mandatory. If, on the one side, this increases the opportunities for the involved organizations, on the other side, every actor is a potential source of failures with impacts on the entire ecosystem. For this reason, resilience is a feature that multi-party business processes today must enforce. As resilience concerns the ability to cope with unplanned situations, managing the critical issues is usually a run-time task.

The aim of this work is to emphasize awareness on resilience in multi-party business processes also at design-time, when a proper analysis of involved data allows the process designer to identify (possible) failures, their impact, and thus improving the process model. Using a data-centric collaboration-oriented language for processes, i.e., OMG CMMN – Case Management Model and Notation, as modeling notation, our approach allows the designer to model a flexible business process that, at run-time, results easier to manage in case of failures.


Process resilience Artifact-centric modeling Levels of resilience CMMN - Case Management Model and Notation 



This work is partly supported by the Italian projects Social Museum e Smart Tourism (CTN01_00034_23154), NEPTIS (PON03PE_00214_3), RoMA - Resilience of Metropolitan Areas (SCN_00064), ITS2020 (CTN01_00176_166195), and by the Sapienza project “Data-aware Adaptation of Knowledge-intensive Processes in Cyber-Physical Domains through Action-based Languages”.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between flexibility and support. Comput. Sci. - R&D 23(2), 99–113 (2009)Google Scholar
  3. 3.
    Adger, W.N.: Social and ecological resilience: are they related? Prog. Hum. Geogr. 24(3), 347–364 (2000)CrossRefGoogle Scholar
  4. 4.
    Antunes, P., Mourõ, H.: Resilient business process management: framework and services. Expert Syst. Appl. 38(2), 1241–1254 (2011)CrossRefGoogle Scholar
  5. 5.
    Batini, C., Scannapieco, M.: Data and Information Quality - Dimensions, Principles and Techniques. Springer, Heidelberg (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Caralli, R.A., Allen, J.H., White, D.W.: CERT Resilience Management Model: A Maturity Model for Managing Operational Resilience. Addison-Wesley, Boston (2010)Google Scholar
  7. 7.
    Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data Knowl. Eng. 24(3), 211–238 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dadam, P., Rinderle, S.: Workflow evolution. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 3540–3544. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Fahland, D., Lübke, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: Declarative versus imperative process modeling languages: the issue of understandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS/EMMSAD-2009. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01862-6_29 CrossRefGoogle Scholar
  10. 10.
    Firmani, D., Mecella, M., Scannapieco, M., Batini, C.: On the meaningfulness of “Big Data Quality”. Data Sci. Eng. 1(1), 6–20 (2016)CrossRefGoogle Scholar
  11. 11.
    Gunderson, L.H.: Ecological resilience-in theory and application. Ann. Rev. Ecol. Syst. 31, 425–439 (2000)CrossRefGoogle Scholar
  12. 12.
    Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the Provop approach. J. Softw. Maint. Evol. Res. Pract. 22(6–7), 519–546 (2009)CrossRefGoogle Scholar
  13. 13.
    vom Hallerbach, A., Bauer, T., Reichert, M.: Configuration and management of process variants. In: Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management. International Handbooks on Information Systems, vol. 1, pp. 237–255. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Hollnagel, E., Woods, D.D., Leveson, N.: Resilience Engineering: Concepts and Precepts. Ashgate Publishing, Ltd., Farnham (2007)Google Scholar
  15. 15.
    Johannesson, P., Perjons, E.: An Introduction to Design Science. Springer, Heidelberg (2014)CrossRefzbMATHGoogle Scholar
  16. 16.
    Marrella, A., Lespérance, Y.: Synthesizing a library of process templates through partial-order planning algorithms. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS/EMMSAD-2013. LNBIP, vol. 147, pp. 277–291. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38484-4_20 CrossRefGoogle Scholar
  17. 17.
    Marrella, A., Mecella, M., Russo, A.: Collaboration on-the-field: suggestions and beyond. In: 8th International Conference on Information Systems for Crisis Response and Management (ISCRAM) (2011)Google Scholar
  18. 18.
    Marrella, A., Mecella, M., Sardiña, S.: Intelligent process adaptation in the SmartPM system. ACM TIST 8(2), 25 (2017)Google Scholar
  19. 19.
    Müller, G., Koslowski, T.G., Accorsi, R.: Resilience - a new research field in business information systems? In: Abramowicz, W. (ed.) BIS 2013. LNBIP, vol. 160, pp. 3–14. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41687-3_2 CrossRefGoogle Scholar
  20. 20.
    Nachira, F., Nicolai, A., Dini, P., Le Louarn, M., Rivera Leon, L. (eds.): Digital Business Ecosystems. European Commission DG Information Society and Media, Office for Official Publications of the European Communities, Luxembourg (2007). ISBN 92-79-01817-5Google Scholar
  21. 21.
    OMG: Case Management Model and Notation, Version 1.0, May 2014.
  22. 22.
    Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems - Challenges, Methods, Technologies. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  23. 23.
    Rosemann, M., Recker, J.: Context-aware process design exploring the extrinsic drivers for process flexibility. In: 7th International Workshop on Business Process Modeling, Development, and Support (BPMDS) (2006)Google Scholar
  24. 24.
    Sadiq, S.W., Orlowska, M.E.: On capturing exceptions in workflow process models. In: Abramowicz, W., Orlowska, M.E. (eds.) BIS 2000, pp. 3–19. Springer, London (2000)Google Scholar
  25. 25.
    Suriadi, S., Weiß, B., Winkelmann, A., et al.: Current research in risk-aware business process management: overview, comparison, and gap analysis. Commun. Assoc. Inf. Syst. 34(1), 933–984 (2014)Google Scholar
  26. 26.
    Tjoa, S., Jakoubi, S., Goluch, G., Kitzler, G., Goluch, S., Quirchmayr, G.: A formal approach enabling risk-aware business process modeling and simulation. IEEE Trans. Serv. Comput. 4(2), 153–166 (2011)CrossRefGoogle Scholar
  27. 27.
    Van De Walle, B., Turoff, M., Hiltz, S.R.: Information Systems for Emergency Management. M.E. Sharpe, Armonk (2009)Google Scholar
  28. 28.
    de Vrieze, P., Xu, L.: Resilience analysis of collaborative process management systems. In: Afsarmanesh, H., Camarinha-Matos, L.M., Lucas Soares, A. (eds.) PRO-VE 2016. IAICT, vol. 480, pp. 124–133. Springer, Cham (2016). doi: 10.1007/978-3-319-45390-3_11 CrossRefGoogle Scholar
  29. 29.
    Yates, T.M., Masten, A.S.: Fostering the Future: Resilience Theory and the Practice of Positive Psychology. Wiley, Hoboken (2004)Google Scholar
  30. 30.
    Zahoransky, R.M., Brenig, C., Koslowski, T.: Towards a process-centered resilience framework. In: 10th International Conference on Availability, Reliability and Security (ARES), pp. 266–273. IEEE (2015)Google Scholar
  31. 31.
    Zahoransky, R.M., Koslowski, T., Accorsi, R.: Toward resilience assessment in business process architectures. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 360–370. Springer, Cham (2014). doi: 10.1007/978-3-319-10557-4_39 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pierluigi Plebani
    • 1
    Email author
  • Andrea Marrella
    • 2
  • Massimo Mecella
    • 2
  • Marouan Mizmizi
    • 1
  • Barbara Pernici
    • 1
  1. 1.Politecnico di Milano - DEIBMilanItaly
  2. 2.Sapienza Università di Roma - DIAGRomaItaly

Personalised recommendations