Discovery of Fuzzy DMN Decision Models from Event Logs

  • Ekaterina Bazhenova
  • Stephan Haarmann
  • Sven Ihde
  • Andreas Solti
  • Mathias Weske
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10253)


Successful business process management is highly dependent on effective decision making. The recent Decision Model and Notation (DMN) standard prescribes decisions to be documented and executed complementary to processes. However, the decision logic is often implicitly contained in event logs, and “as-is” decision knowledge needs to be retrieved. Commonly, decision logic is represented by rules based on Boolean algebra. The formal nature of such decisions is often hard for interpretation and utilization in practice, because imprecision is intrinsic to real-life decisions. Operations research considers fuzzy logic, based on fuzzy algebra, as a tool dealing with partial knowledge. In this paper, we explore the possibility of incorporating fuzziness into DMN decision models. Further, we propose a methodology for discovering fuzzy DMN decision models from event logs. The evaluation of our approach on a use case from the banking domain shows high comprehensibility and accuracy of the output decision model.


Fuzzy logic Decision models Decision mining DMN Event logs 


  1. 1.
    CPN Tools. Accessed 29 Nov 2016
  2. 2.
    Matlab. Accessed 29 Nov 2016
  3. 3.
    Baesens, B., Setiono, R., Mues, C., Vanthienen, J.: Using neural network rule extraction and decision tables for credit-risk evaluation. Manag. Sci. 49(3), 312–329 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015). doi: 10.1007/978-3-319-19069-3_22 CrossRefGoogle Scholar
  5. 5.
    Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 237–251. Springer, Cham (2016). doi: 10.1007/978-3-319-39426-8_19 CrossRefGoogle Scholar
  6. 6.
    Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol. 295. Springer, Heidelberg (2013)MATHGoogle Scholar
  7. 7.
    Capon, N.: Credit scoring systems: a critical analysis. J. Mark. 46(2), 82–91 (1982)CrossRefGoogle Scholar
  8. 8.
    Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3), 267–278 (1994)Google Scholar
  9. 9.
    Leoni, M., Dumas, M., García-Bañuelos, L.: Discovering branching conditions from business process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37057-1_9 CrossRefGoogle Scholar
  10. 10.
    Debevoise, T., Taylor, J.: The MicroGuide to Process Modeling and Decision in BPMN/DMN. CreateSpace Independent Publishing Platform (2014)Google Scholar
  11. 11.
    Gonzalez, A., Perez, R.: Completeness and consistency conditions for learning fuzzy rules. Fuzzy Sets Syst. 96(1), 37–51 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoffmann, F., Baesens, B., Mues, C., Van Gestel, T., Vanthienen, J.: Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms. Eur. J. Oper. Res. 177(1), 540–555 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Hubbard, E.M., Diester, I., Cantlon, J.F., Ansari, D., van Opstal, F., Troiani, V.: The evolution of numerical cognition: from number neurons to linguistic quantifiers. J. Neurosci. 28(46), 11819–11824 (2009)CrossRefGoogle Scholar
  14. 14.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016). doi: 10.1007/978-3-319-39696-5_23 Google Scholar
  15. 15.
    Nauck, D.: Fuzzy data analysis with NEFCLASS. Int. J. Approximate Reasoning 32(2), 103–130 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    OMG. Business Process Model and Notation (BPMN), v.2.0.2 (2013)Google Scholar
  17. 17.
    OMG. Decision Model And Notation (DMN), v.1.1 (2016)Google Scholar
  18. 18.
    Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006). doi: 10.1007/11841760_33 CrossRefGoogle Scholar
  19. 19.
    Vanthienen, J., Wets, G., Chen, G.: Incorporating fuzziness in the classical decision table formalism. Int. J. Intell. Syst. 11(11), 879–891 (1996)CrossRefGoogle Scholar
  20. 20.
    Von Halle, B., Goldberg, L., Model, T.D.: A Business Logic Framework Linking Business and Technology. Taylor and Francis Group, Abingdon (2010)Google Scholar
  21. 21.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2005)MATHGoogle Scholar
  22. 22.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefMATHGoogle Scholar
  23. 23.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Applications, 3rd edn. Kluwer Academic Publishers, Norwell (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ekaterina Bazhenova
    • 1
  • Stephan Haarmann
    • 1
  • Sven Ihde
    • 1
  • Andreas Solti
    • 2
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner Institute at the University of PotsdamPotsdamGermany
  2. 2.Vienna University of Economics and BusinessViennaAustria

Personalised recommendations