Predictive Business Process Monitoring with LSTM Neural Networks

  • Niek Tax
  • Ilya VerenichEmail author
  • Marcello La Rosa
  • Marlon Dumas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10253)


Predictive business process monitoring methods exploit logs of completed cases of a process in order to make predictions about running cases thereof. Existing methods in this space are tailor-made for specific prediction tasks. Moreover, their relative accuracy is highly sensitive to the dataset at hand, thus requiring users to engage in trial-and-error and tuning when applying them in a specific setting. This paper investigates Long Short-Term Memory (LSTM) neural networks as an approach to build consistently accurate models for a wide range of predictive process monitoring tasks. First, we show that LSTMs outperform existing techniques to predict the next event of a running case and its timestamp. Next, we show how to use models for predicting the next task in order to predict the full continuation of a running case. Finally, we apply the same approach to predict the remaining time, and show that this approach outperforms existing tailor-made methods.


Recurrent Neural Network Activity Prediction Prediction Point Levenshtein Distance Transition System State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is funded by the Australian Research Council (grant DP150103356), the Estonian Research Council (grant IUT20-55) and the RISE_BPM project (H2020 Marie Curie Program, grant 645751).


  1. 1.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  2. 2.
    Becker, J., Breuker, D., Delfmann, P., Matzner, M.: Designing and implementing a framework for event-based predictive modelling of business processes. In: Proceedings of the 6th International Workshop on Enterprise Modelling and Information Systems Architectures, pp. 71–84. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)Google Scholar
  4. 4.
    Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chollet, F.: Keras (2015).
  6. 6.
    Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: ICML, pp. 160–167. ACM (2008)Google Scholar
  7. 7.
    Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)CrossRefGoogle Scholar
  8. 8.
    van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88871-0_22 CrossRefGoogle Scholar
  9. 9.
    Evermann, J., Rehse, J.R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Proceedings of the 1st International Workshop on Runtime Analysis of Process-Aware Information Systems. Springer, Rio de Janeiro (2016)Google Scholar
  10. 10.
    Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: CoopIS, pp. 287–304 (2012)Google Scholar
  11. 11.
    Francescomarino, C.D., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W.: Predictive business process monitoring framework with hyperparameter optimization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 361–376. Springer, Cham (2016). doi: 10.1007/978-3-319-39696-5_22 Google Scholar
  12. 12.
    Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. CoRR (2015). to appear in Transactions on Services Computing
  13. 13.
    Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)Google Scholar
  14. 14.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  15. 15.
    Kingma, D., Ba, J.: ADAM: a method for stochastic optimization. In: Proceedings of the 3rd International Conference for Learning Representations (2015)Google Scholar
  16. 16.
    Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)CrossRefGoogle Scholar
  17. 17.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  18. 18.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  19. 19.
    Leontjeva, A., Conforti, R., Francescomarino, C.D., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_21 CrossRefGoogle Scholar
  20. 20.
    Maggi, F.M., Francescomarino, C.D., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). doi: 10.1007/978-3-319-07881-6_31 Google Scholar
  21. 21.
    Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: 2012 Annual SRII Global Conference, pp. 313–322. IEEE (2012)Google Scholar
  22. 22.
    Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M., Dustdar, S., Pohl, K.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. Syst. Man Cybern.: Syst. 45(2), 276–290 (2015)CrossRefGoogle Scholar
  23. 23.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  24. 24.
    Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36285-9_22 CrossRefGoogle Scholar
  25. 25.
    Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. arXiv preprint (2016). arXiv:1602.07566
  26. 26.
    Pravilovic, S., Appice, A., Malerba, D.: Process mining to forecast the future of running cases. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2013. LNCS, vol. 8399, pp. 67–81. Springer, Cham (2014). doi: 10.1007/978-3-319-08407-7_5 Google Scholar
  27. 27.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45005-1_27 CrossRefGoogle Scholar
  28. 28.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining - predicting delays in service processes. In: CAiSE, pp. 42–57 (2014)Google Scholar
  29. 29.
    van der Spoel, S., van Keulen, M., Amrit, C.: Process Prediction in Noisy Data Sets: A Case Study in a Dutch Hospital. In: Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 60–83. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40919-6_4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Niek Tax
    • 1
  • Ilya Verenich
    • 2
    • 3
    Email author
  • Marcello La Rosa
    • 2
  • Marlon Dumas
    • 3
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Queensland University of TechnologyBrisbaneAustralia
  3. 3.University of TartuTartuEstonia

Personalised recommendations