Aligning Textual and Graphical Descriptions of Processes Through ILP Techniques

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10253)


With the aim of having individuals from different backgrounds and expertise levels examine the operations in an organization, different representations of business processes are maintained. To have these different representations aligned is not only a desired feature, but also a real challenge due to the contrasting nature of each process representation. In this paper we present an efficient technique for aligning a textual description and a graphical model of a process. The technique is grounded on using natural language processing techniques to extract linguistic features of each representation, and encode the search as a mathematical optimization encoded using Integer Linear Programming (ILP) whose resolution ensures an optimal alignment between both descriptions. The technique has been implemented and the experiments witness the significance of the approach with respect to the state-of-the-art technique for the same task.


Process models Natural language processing Integer Linear Programming 



We would like to thank Han van der Aa and Henrik Leopold for their help and support to this work, and for sharing their software and part of the data used in the experiments of the paper. This work is funded by the Spanish Ministry for Economy and Competitiveness (MINECO), the European Union (FEDER funds) under grants COMMAS and Graph-Med (ref. TIN2013-46181-C2-1-R, TIN2016-77820-C3-3-R).


  1. 1.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation through natural language generation. IEEE Trans. Softw. Eng. 40(8), 818–840 (2014)CrossRefGoogle Scholar
  2. 2.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    van der Aa, H., Leopold, H., Mannhardt, F., Reijers, H.A.: On the fragmentation of process information: challenges, solutions, and outlook. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 3–18. Springer, Cham (2015). doi: 10.1007/978-3-319-19237-6_1 CrossRefGoogle Scholar
  4. 4.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)Google Scholar
  5. 5.
    Padró, L., Stanilovsky, E.: Freeling 3.0: towards wider multilinguality. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC, Istanbul, Turkey, pp. 2473–2479, May 2012Google Scholar
  6. 6.
    Bird, S., Loper, E., Ewan, K.: Natural Language Processing with Python. O’Reilly Media Inc., Sebastopol (2009)zbMATHGoogle Scholar
  7. 7.
    Apache Software Foundation: Apache OpenNLP (2010).
  8. 8.
    van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between process models and textual descriptions. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 90–105. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_6 CrossRefGoogle Scholar
  9. 9.
    van der Aa, H., Leopold, H., Reijers, H.A.: Comparing textual descriptions to process models - the automatic detection of inconsistencies. Inf. Syst. 64, 447–460 (2016)Google Scholar
  10. 10.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)Google Scholar
  11. 11.
    Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language specifications from UML class diagrams. Requir. Eng. 13(1), 1–18 (2008)CrossRefGoogle Scholar
  12. 12.
    Bajwa, I.S., Choudhary, M.A.: From natural language software specifications to UML class models. In: Zhang, R., Zhang, J., Zhang, Z., Filipe, J., Cordeiro, J. (eds.) ICEIS 2011. LNBIP, vol. 102, pp. 224–237. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29958-2_15 CrossRefGoogle Scholar
  13. 13.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21640-4_36 CrossRefGoogle Scholar
  14. 14.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cayoglu, U., et al.: Report: the process model matching contest 2013. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 442–463. Springer, Cham (2014). doi: 10.1007/978-3-319-06257-0_35 CrossRefGoogle Scholar
  16. 16.
    de A.R. Gonçalves, J.C., Santoro, F.M., Baião, F.A.: Business process mining from group stories. In: Proceedings of the 13th International Conference on Computers Supported Cooperative Work in Design, CSCWD, Santiago, Chile, pp. 161–166, April 2009Google Scholar
  17. 17.
    Sinha, A., Paradkar, A.M.: Use cases to process specifications in business process modeling notation. In: IEEE International Conference on Web Services, ICWS, Miami, Florida, pp. 473–480, July 2010Google Scholar
  18. 18.
    Fellbaum, C.: WordNet. An Electronic Lexical Database. Language, Speech, and Communication. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  19. 19.
    Weidlich, M.: Behavioural profiles: a relational approach to behaviour consistency. Ph.D. thesis, University of Potsdam (2011)Google Scholar
  20. 20.
    Polyvyanyy, A., Weidlich, M., Conforti, R., Rosa, M., ter Hofstede, A.H.M.: The 4C spectrum of fundamental behavioral relations for concurrent systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210–232. Springer, Cham (2014). doi: 10.1007/978-3-319-07734-5_12 CrossRefGoogle Scholar
  21. 21.
    van der Aa, H., Leopold, H., Reijers, H.A.: Dealing with behavioral ambiguity in textual process descriptions. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 271–288. Springer, Cham (2016). doi: 10.1007/978-3-319-45348-4_16 CrossRefGoogle Scholar
  22. 22.
    Mirza, P.: Extracting temporal and causal relations between events. Ph.D. thesis, International Doctorate School in Information and Communication Technologies, University of Trento, Italy (2016)Google Scholar
  23. 23.
    UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M., Pustejovsky, J.: SemEval-2013 Task 1: TEMPEVAL-3: evaluating time expressions, events, and temporal relations. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), vol. 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 1–9. Association for Computational Linguistics, June 2013Google Scholar
  24. 24.
    Gurobi Optimization Inc: Gurobi optimizer reference manual (2016).
  25. 25.
    Burattin, A.: PLG2: multiperspective process randomization with online and offline simulations. In: Online Proceedings of the BPM Demo Track 2016, Rio de Janeiro, Brasil, September 2016Google Scholar
  26. 26.
    Schwartz, H.R.: Markov sentence generator (2010).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations