Existing Approaches to Smart Parking: An Overview

  • Fernando Enríquez
  • Luis Miguel SoriaEmail author
  • Juan Antonio Álvarez-García
  • Francisco Velasco
  • Oscar Déniz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10268)


After years of technological advances, parking is still a problem for many people. It is a time-consuming task that we all have to face on a day-by-day basis and it is also a problem for cities, that see how traffic and pollution increases. There have been multiple attempts to find a partial or global technological solution to this problem, ranging from using different types of sensors or cameras for automatically detecting free spaces to collaborative apps that let users share relevant information. In this paper, we give an overview of the methods developed so far, showing their main features, differences, pros, and cons, as well as other factors that may contribute to the success or failure of new proposals that will come in the future.


Smart city Parking Crowdsensing Computer vision 



This research is partially supported by the Spanish Economy Ministry and FEDER R&D through the “HERMES–Smart Citizen” project (TIN2013-46801-C4-1-R).


  1. 1.
    Bongaarts, J.: United nations department of economic and social affairs, population division world mortality report 2005. Popul. Dev. Rev. 32(3), 594–596 (2006)Google Scholar
  2. 2.
    Shoup, D.C.: Cruising for parking. Transp. Policy 13(6), 479–486 (2006)CrossRefGoogle Scholar
  3. 3.
    Gallivan, S.: IBM global parking survey: drivers share worldwide parking woes technical report. Technical report, IBM (2011)Google Scholar
  4. 4.
    Mathur, S., Jin, T., Kasturirangan, N., Chandrasekaran, J., Xue, W., Gruteser, M., Trappe, W.: Parknet: drive-by sensing of road-side parking statistics. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, pp. 123–136. ACM (2010)Google Scholar
  5. 5.
    Bock, F., Eggert, D., Sester, M.: On-street parking statistics using lidar mobile mapping. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), pp. 2812–2818. IEEE (2015)Google Scholar
  6. 6.
    Lin, T.S.: Smart parking: network, infrastructure and urban service. Ph.D. thesis, Lyon, INSA (2015)Google Scholar
  7. 7.
    Evenepoel, S., Van Ooteghem, J., Verbrugge, S., Colle, D., Pickavet, M.: On-street smart parking networks at a fraction of their cost: performance analysis of a sampling approach. Trans. Emerg. Telecommun. Technol. 25(1), 136–149 (2014)CrossRefGoogle Scholar
  8. 8.
    Sanchez, L., Muñoz, L., Galache, J.A., Sotres, P., Santana, J.R., Gutierrez, V., Ramdhany, R., Gluhak, A., Krco, S., Theodoridis, E., et al.: Smartsantander: IoT experimentation over a smart city testbed. Comput. Netw. 61, 217–238 (2014)CrossRefGoogle Scholar
  9. 9.
    Ghent, P.: Optimizing performance objectives for projects of congestion pricing for parking. Transp. Res. Rec. J. Transp. Res. Board 2530, 101–105 (2015)CrossRefGoogle Scholar
  10. 10.
    Amato, G., Carrara, F., Falchi, F., Gennaro, C., Meghini, C., Vairo, C.: Deep learning for decentralized parking loT occupancy detection. Expert Syst. Appl. 72, 327–334 (2017)CrossRefGoogle Scholar
  11. 11.
    Bin, Z., Dalin, J., Fang, W., Tingting, W.: A design of parking space detector based on video image. In: Proceedings of 9th International Conference on Electronic Measurement and Instruments (ICEMI 2009), pp. 2253–2256 (2009)Google Scholar
  12. 12.
    Funck, S., Mohler, N., Oertel, W.: Determining car-park occupancy from single images. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 325–328. IEEE (2004)Google Scholar
  13. 13.
    Huang, C.C., Wang, S.J., Chang, Y.J., Chen, T.: A bayesian hierarchical detection framework for parking space detection. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), vol. 1, pp. 2097–2100 (2008)Google Scholar
  14. 14.
    Ichihashi, H., Notsu, A., Honda, K., Katada, T., Fujiyoshi, M.: Vacant parking space detector for outdoor parking lot by using surveillance camera and FCM classifier. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2009), pp. 127–134. IEEE (2009)Google Scholar
  15. 15.
    Masmoudi, I., Wali, A., Jamoussi, A., Alimi, A.M.: Vision based system for vacant parking lot detection: Vpld. In: IEEE International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 1–8, January 2014Google Scholar
  16. 16.
    Toulminet, G., Bertozzi, M., Mousset, S., Bensrhair, A., Broggi, A.: Vehicle detection by means of stereo vision-based obstacles features extraction and monocular pattern analysis. IEEE Trans. Image Process. 15(8), 2364–2375 (2006)CrossRefGoogle Scholar
  17. 17.
    Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vairo, C., Moruzzi, G.: Car parking occupancy detection using smart camera networks and deep learning. In: IEEE Symposium on IEEE Computers and Communication (ISCC), (Dl) (2016)Google Scholar
  18. 18.
    Suhr, J.K., Jung, H.G.: Sensor fusion-based vacant parking slot detection and tracking. IEEE Trans. Intell. Transp. Syst. 15(1), 21–36 (2014)CrossRefGoogle Scholar
  19. 19.
    Jermsurawong, J., Ahsan, M.U., Haidar, A., Dong, H., Mavridis, N.: Car parking vacancy detection and its application in 24-hour statistical analysis. In: 2012 10th International Conference on Frontiers of Information Technology (FIT), pp. 84–90. IEEE (2012)Google Scholar
  20. 20.
    Zhang, Q., Couloigner, I.: Benefit of the angular texture signature for the separation of parking lots and roads on high resolution multi-spectral imagery. Pattern Recognit. Lett. 27(9), 937–946 (2006)CrossRefGoogle Scholar
  21. 21.
    Yamada, K., Mizuno, M.: A vehicle parking detection method using image segmentation. Electron. Commun. Japan 84(10), 25–34 (2001). (Part III: Fundamental Electronic Science)CrossRefGoogle Scholar
  22. 22.
    Wang, X., Hanson, A.R.: Parking loT analysis and visualization from aerial images. In: Fourth IEEE Workshop on Applications of Computer Vision (1998)Google Scholar
  23. 23.
    Hodel, T.B., Cong, S.: Parking space optimization services, a uniformed web application architecture. In: ITS World Congress Proceedings, pp. 16–20 (2003)Google Scholar
  24. 24.
    Chou, S.Y., Lin, S.W., Li, C.C.: Dynamic parking negotiation and guidance using an agent-based platform. Expert Syst. Appl. 35(3), 805–817 (2008)CrossRefGoogle Scholar
  25. 25.
    Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., González, M.C.: Understanding road usage patterns in urban areas. arXiv preprint (2012). arXiv:1212.5327
  26. 26.
    Nandugudi, A., Ki, T., Nuessle, C., Challen, G.: Pocketparker: pocket sourcing parking loT availability. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 963–973. ACM (2014)Google Scholar
  27. 27.
    Geng, Y., Cassandras, C.G.: New “smart parking” system based on resource allocation and reservations. IEEE Trans. Intell. Transp. Syst. 14(3), 1129–1139 (2013)Google Scholar
  28. 28.
    Hoh, B., Yan, T., Ganesan, D., Tracton, K., Iwuchukwu, T., Lee, J.S.: Trucentive: a game-theoretic incentive platform for trustworthy mobile crowdsourcing parking services. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 160–166. IEEE (2012)Google Scholar
  29. 29.
    Chen, X., Santos-Neto, E., Ripeanu, M.: Crowdsourcing for on-street smart parking. In: Proceedings of the Second ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, pp. 1–8. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fernando Enríquez
    • 1
  • Luis Miguel Soria
    • 1
    Email author
  • Juan Antonio Álvarez-García
    • 1
  • Francisco Velasco
    • 2
  • Oscar Déniz
    • 3
  1. 1.Computer Languages and Systems DepartmentUniversity of SevilleSevilleSpain
  2. 2.Applied Economics I DepartmentUniversity of SevilleSevilleSpain
  3. 3.VISILAB, E.T.S.I.IUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations