Advertisement

A Sustainable Bi-objective Approach for the Minimum Latency Problem

  • Nancy A. Arellano-ArriagaEmail author
  • Ada M. Álvarez-Socarrás
  • Iris A. Martínez-Salazar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10268)

Abstract

Nowadays, sustainability is a major factor to consider in the decision-making process. Specifically, for companies trying to stay competitive and having some advantage in the market it is a vital issue. In this study, we introduce a multi objective problem which aims to minimize distance and latency of a route with enough capacity to serve a set of clients. We assume that a vehicle leaves an established depot, visits all clients and returns to the depot before the end of the workday. With this bi-objective problem, we aim to improve the sustainability of the company by improving their economic and environmental contribution, through the minimization of the traveled distance of the vehicle along with the improvement of their social service by the minimization of the total waiting time of the customers. We call this problem Minimum Latency-Distance Problem (mldp) and in this paper, we introduce a mathematical formulation which describes it.

Keywords

Combinatorial optimization Mathematical formulation Multiple objective programming Multi objective optimization Multi objective problem Latency Distance Multi objective routing problem 

Notes

Acknowledgements

The first author would like to thank CONACYT, the Mexican National Council for Science and Technology, which supports her studies. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Daly, H.E.: Toward a Steady State Economy. Freeman, San Francisco (1973)Google Scholar
  2. 2.
    Daly, H.E., Cobb, J.B.: For the Common Good. Beacon Press, Boston (1989)Google Scholar
  3. 3.
    Daly, H.E.: Allocation, distribution and scale: towards an economics which is efficient, just and sustainable. Ecol. Econ. 6(3), 185–193 (1992)CrossRefGoogle Scholar
  4. 4.
    Wackernagel, M., Rees, W.: Our Ecological Footprint: Reducing Human Impact on the Earth. The New Catalyst. Bioregional Series. New Society Publishers, Gabriola Island (1998)Google Scholar
  5. 5.
    Goodland, R.: The concept of environmental sustainability. Ann. Rev. Ecol. Syst. 26, 1–24 (1995)CrossRefGoogle Scholar
  6. 6.
    Esty, D.C., Levy, M., Srebotnjak, T., De Sherbinin, A.: Environmental Sustainability Index: Benchmarking National Environmental Stewardship, pp. 47–60. Yale Center for Environmental Law & Policy, New Haven (2005)Google Scholar
  7. 7.
    Dangelico, R.M., Pujari, D.: Mainstreaming green product innovation: why and how companies integrate environmental sustainability. J. Bus. Eth. 95(3), 471–486 (2010)CrossRefGoogle Scholar
  8. 8.
    Baral, N., Pokharel, M.P.: How sustainability is reflected in the \(\text{S}\)&\(\text{ P }\) 500 companies strategic documents. Organ. Environ. (April 24, 2016). doi: 10.1177/1086026616645381
  9. 9.
    Schaltegger, S., Hansen, E.G., Ldeke-Freund, F.: Business models for sustainability: origins, present research, and future avenues. Organ. Environ. 29(1), 3–10 (2016)CrossRefGoogle Scholar
  10. 10.
    Polèse, M., Stren, R.: The Social Sustainability of Cities: Diversity and the Management of Change. University of Toronto Press, Toronto (2000)CrossRefGoogle Scholar
  11. 11.
    Littig, B., Griessler, E.: Social sustainability: a catchword between political pragmatism and social theory. Int. J. Sustain. Dev. 8(1), 65–79 (2005)CrossRefGoogle Scholar
  12. 12.
    Goodland, R.: Sustainability: Human, Social, Economic and Environmental. Encyclopedia of Global Environmental Change. Wiley, London (2002)Google Scholar
  13. 13.
    Costanza, R., Graumlich, L., Steffen, W., Crumley, C., Dearing, J., Hibbard, K., Leemans, R., Redman, C., Schimel, D.: Sustainability or collapse: what can we learn from integrating the history of humans and the rest of nature? Ambio 36(7), 522–527 (2007)CrossRefGoogle Scholar
  14. 14.
    Dobson, A.: Justice and the Environment: Conceptions of Environmental Sustainability and Theories of Distributive Justice. Clarendon Press, Oxford (1998)CrossRefGoogle Scholar
  15. 15.
    Dobson, A.: Fairness and Futurity: Essays on Environmental Sustainability and Social Justice. Oxford University Press, Oxford (1999)CrossRefGoogle Scholar
  16. 16.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  17. 17.
    Lucena, A.: Time-dependent traveling salesman problem-the deliveryman case. Networks 20(6), 753–763 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing (STOC 1994), pp. 163–171. ACM, New York (1994)Google Scholar
  19. 19.
    Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 36–45. IEEE (2003)Google Scholar
  20. 20.
    Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)CrossRefzbMATHGoogle Scholar
  21. 21.
    Angel Bello, F., Álvarez, A., García, I.: Two improved formulations for the minimum latency problem. Appl. Math. Model. 37(4), 2257–2266 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Angel-Bello, F., Martinez-Salazar, I., Alvarez, A.: Minimizing waiting times in a route design problem with multiple use of a single vehicle. In: INOC (2013)Google Scholar
  23. 23.
    Méndez-Díaz, I., Zabala, P., Lucena, A.: A new formulation for the traveling deliveryman problem. Discrete Appl. Math. 156(17), 3223–3237 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gouveia, L., Voß, S.: A classification of formulations for the (time-dependent) traveling salesman problem. Eur. J. Oper. Res. 83(1), 69–82 (1995)CrossRefzbMATHGoogle Scholar
  25. 25.
    Picard, J.C., Queyranne, M.: The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling. Oper. Res. 26(1), 86–110 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sarubbi, J., Luna, H., Miranda, G.: Minimum latency problem as a shortest path problem with side constraints (2008)Google Scholar
  27. 27.
    Afrati, F., Cosmadakis, S., Papadimitriou, C.H., Papageorgiou, G., Papakostantinou, N.: The complexity of the travelling repairman problem. RAIRO Theor. Inf. Appl. 20(1), 79–87 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Massachusetts (1994)zbMATHGoogle Scholar
  29. 29.
    Mavrotas, G., Florios, K.: An improved version of the augmented -constraint method (augmecon2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219(18), 9652–9669 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ferreira, J.C., Fonseca, C.M., Gaspar-Cunha, A.: Methodology to select solutions from the pareto-optimal set: a comparative study. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007), pp. 789–796. ACM, New York (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nancy A. Arellano-Arriaga
    • 1
    • 2
    Email author
  • Ada M. Álvarez-Socarrás
    • 1
  • Iris A. Martínez-Salazar
    • 1
  1. 1.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Departamento de Economía Aplicada (Matemáticas)Universidad de MálagaMálagaSpain

Personalised recommendations