Skip to main content

Robust Bi-objective Shortest Path Problem in Real Road Networks

  • Conference paper
  • First Online:
Smart Cities (Smart-CT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10268))

Included in the following conference series:

Abstract

Road journeys are one of our most frequent daily tasks. Despite we need them, these trips have some associated costs: time, money, pollution, etc. One of the usual ways of modeling the road network is as a graph. The shortest path problem consists in finding the path in a graph that minimizes a certain cost function. However, in real world applications, more than one objective must be optimized simultaneously (e.g. time and pollution) and the data used in the optimization is not precise: it contains errors. In this paper we propose a new mathematical model for the robust bi-objective shortest path problem. In addition, some empirical studies are included to illustrate the utility of our formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Official web site: https://www.openstreetmap.org.

References

  1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  3. Cintrano, C., Stolfi, D.H., Toutouh, J., Chicano, F., Alba, E.: CTPATH: a real world system to enable green transportation by optimizing environmentaly friendly routing paths. In: Alba, E., Chicano, F., Luque, G. (eds.) Smart-CT 2016. LNCS, vol. 9704, pp. 63–75. Springer, Cham (2016). doi:10.1007/978-3-319-39595-1_7

    Google Scholar 

  4. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. LNE, vol. 177, pp. 109–127. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  6. Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectrum 38(1), 235–271 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duque, D., Lozano, L., Medaglia, A.L.: An exact method for the biobjective shortest path problem for large-scale road networks. Eur. J. Oper. Res. 242(3), 788–797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, J., Lisser, A., Letournel, M.: Distributionally robust stochastic shortest path problem. Electr. Notes Discrete Math. 36, 511–518 (2010)

    Article  Google Scholar 

  9. Hasuike, T.: Robust shortest path problem based on a confidence interval in fuzzy bicriteria decision making. Inf. Sci. 221, 520–533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pascoal, M.M., Resende, M.: The minmax regret robust shortest path problem in a finite multi-scenario model. Appl. Math. Comput. 241, 88–111 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. (1), 17–31

    Google Scholar 

  12. Kuhn, K., Raith, A., Schmidt, M., Schöbel, A.: Bi-objective robust optimisation. Eur. J. Oper. Res. 252(2), 418–431 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the University of Málaga, Andalucía Tech, and the Spanish Ministry of Economy and Competitiveness and FEDER (grant TIN2014-57341-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Cintrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cintrano, C., Chicano, F., Alba, E. (2017). Robust Bi-objective Shortest Path Problem in Real Road Networks. In: Alba, E., Chicano, F., Luque, G. (eds) Smart Cities. Smart-CT 2017. Lecture Notes in Computer Science(), vol 10268. Springer, Cham. https://doi.org/10.1007/978-3-319-59513-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59513-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59512-2

  • Online ISBN: 978-3-319-59513-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics