Advertisement

Predicting Individual Trip Destinations with Artificial Potential Fields

  • Alessandro ZontaEmail author
  • S. K. Smit
  • Evert Haasdijk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10268)

Abstract

This paper presents a method to model the intended destination of a subject in real time, based on a trace of position information and prior knowledge of possible destinations. In contrast to most work in this field, it does so without the need for prior analysis of habitual travel patterns. The method models the certainty of each POI by means of a virtual charge, resulting in an artificial potential field that reflects the current estimate of the subject’s intentions. The virtual charges are updated as new information about the subject’s position arrives. We experimentally compare a number of update rules with various parameter settings, showing that it is important to take the distance to a potential destination into account when updating the charge.

Keywords

Human behavior Intention analysis Destination prediction GPS Trajectory database 

Notes

Acknowledgement

We thank SURFsara (www.surfsara.nl) for the support in using the Lisa Compute Cluster. The research for this paper was financially supported by the Netherlands Organisation for Applied Scientific Research (TNO).

References

  1. 1.
    Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal Ubiquitous Comput. 7(5), 275–286 (2003)CrossRefGoogle Scholar
  2. 2.
    Nicholson, A.J., Noble, B.D.: BreadCrumbs: forecasting mobile connectivity. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, vol. 2, pp. 46–57 (2008)Google Scholar
  3. 3.
    Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell, A.T.: NextPlace: a spatio-temporal prediction framework for pervasive systems. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 152–169. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21726-5_10 CrossRefGoogle Scholar
  4. 4.
    Do, T.M.T., Gatica-Perez, D.: Where and what: using smartphones to predict next locations and applications in daily life. Pervasive Mob. Comput. 12, 79–91 (2014)CrossRefGoogle Scholar
  5. 5.
    Sadilek, A., Krumm, J., Out, F.: Predicting long-term human mobility. In: 26th AAAI Conference on Artificial Intelligence, pp. 814–820 (2012)Google Scholar
  6. 6.
    Ziebart, B.D., Maas, A.L., Dey, A.K., Bagnell, J.A.: Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior, pp. 322–331 (2008)Google Scholar
  7. 7.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Building personal maps from GPS data. In: International Joint Conference on Artificial Intelligence (IJCAI) Workshop on Modeling Others from Observations (2005)Google Scholar
  8. 8.
    Fallis, A.: Real-time travel path prediction using GPS-enabled mobile phones. J. Chem. Inf. Model. 53(9), 1689–1699 (2013)Google Scholar
  9. 9.
    Lorenzo, G.D., Phithakkitnukoon, S., Horanont, T., Lorenzo, G.D., Map, A.-A.: Identifying human daily activity pattern using mobile phone data. In: Proceedings of the First International Conference on Human Behavior Understanding, pp. 14–25 (2010)Google Scholar
  10. 10.
    Ying, J.J.-C., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Semantic trajectory mining for location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS 2011, p. 34 (2011)Google Scholar
  11. 11.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. IEEE Trans. Knowl. Data Eng. 26(8), 1974–1988 (2014)CrossRefGoogle Scholar
  12. 12.
    Hwang, Y.K., Ahuja, N.: A potential field approach to path planning. IEEE Trans. Robot. Autom. 8(1), 23–32 (1992)CrossRefGoogle Scholar
  13. 13.
    Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. In: Asama, H., Arai, T., Fukuda, T., Hasegawa, T. (eds.) Distributed Autonomous Robotic Systems, vol. 5, pp. 299–308. Springer, Tokyo (2002)Google Scholar
  14. 14.
    Parunak, H., Purcell, L., Six, F., Station, N., O’Connell, M.: Digital pheromones for autonomous coordination of swarming UAV’s. In: 1st UAV Conference, Infotech@Aerospace Conferences (2002)Google Scholar
  15. 15.
    Mottaghi, R., Vaughan, R.: An integrated particle filter and potential field method applied to cooperative multi-robot target tracking. Autonom. Robots 23(1), 19–35 (2007)CrossRefGoogle Scholar
  16. 16.
    Helble, H., Cameron, S.: 3-D path planning and target trajectory prediction for the Oxford aerial tracking system. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1042–1048 (2007)Google Scholar
  17. 17.
    de Jong, S., Klein, A., Smelik, R., van Wermeskerken, F.: Integrating run-time incidents in a large-scale simulated urban environment. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, pp. 1401–1402 (2016)Google Scholar
  18. 18.
    Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on GPS data. In: Proceedings of the 10th International Conference on Ubiquitous Computing - UbiComp 2008, vol. 49, p. 312 (2008)Google Scholar
  19. 19.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web - WWW 2009, vol. 49, p. 791 (2009)Google Scholar
  20. 20.
    Zheng, Y., Xie, X., Ma, W.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–40 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.TNOThe HagueThe Netherlands

Personalised recommendations