Skip to main content

Parallel Computing for Geocomputational Modeling

  • Chapter
  • First Online:
GeoComputational Analysis and Modeling of Regional Systems

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

In the past decade, the emergence of cyberinfrastructure has rendered high-performance computing resources and parallel technologies increasingly open to domain-specific science discovery. The capability of these high-performance computing resources and associated parallel technologies has greatly stimulated researchers to utilize them for domain-specific problem-solving that requires considerable computational support. The objective of this paper is to investigate in detail the utility of parallel computing in geocomputational modeling. We discuss fundamentals in parallel computing and relevant technologies. To best leverage diverse high-performance computing resources often requires well-crafted parallel computing strategies or algorithms. We review the use of parallel computing for geocomputational modeling by focusing on four aspects: spatial statistics, spatial optimization, spatial simulation, and cartography and geovisualization. We design a case study of a spatial agent-based model to show how parallel computing can be exploited to empower advanced geocomputational modeling. Results demonstrate that the evolving parallel computing provides solid support for computationally intensive geocomputational modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong MP (2000) Geography and computational science. Ann Assoc Am Geogr 90: 146–156

    Article  Google Scholar 

  2. Longley PA (1998) Foundations. In: Longley PA, Brooks SM, McDonnell R, MacMillan B (eds) Geocomputation: a Primer. Wiley, New York

    Google Scholar 

  3. Openshaw S, Abrahart RJ (1996) Geocomputation. In: Abrahart RJ (ed) Proceedings of the first international conference on geocomputation. University of Leeds, Leeds, pp 665–666

    Google Scholar 

  4. Gahegan M (1999) What is geocomputation? Trans GIS 3:203–206

    Article  Google Scholar 

  5. Openshaw S, Turton I (2000) High performance computing and art of parallel programming: an introduction for geographers, social scientists, and engineers. Taylor & Francis Group, London

    Google Scholar 

  6. NSF (2007) Cyberinfrastructure vision for 21st century discovery. Report of NSF Council. http://www.nsf.gov/od/oci/ci_v5.pdf

  7. Atkins DE, Droegemeie KK, Feldman SI, Garcia-Molina H, Klein ML, Messerschmitt DG et al (2003) Revolutionizing science and engineering through cyberinfrastructure: report of the National Science Foundation Blue-Ribbon Advisory Panel on cyberinfrastructure. US National Science Foundation, Arlington, VA

    Google Scholar 

  8. Wang S (2010) A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Ann Assoc Am Geogr 100:535–557

    Article  Google Scholar 

  9. Yang C, Raskin R, Goodchild M, Gahegan M (2010) Geospatial cyberinfrastructure: past, present and future. Comput Environ Urban Syst 34:264–277

    Article  Google Scholar 

  10. Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L et al (eds) (2003) The sourcebook of parallel computing. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  11. Foster I (1995) Designing and building parallel programs: concepts and tools for parallel software engineering. Addison-Wesley, Reading, MA

    Google Scholar 

  12. Wilkinson B, Allen M (2004) Parallel programming: techniques and applications using networked workstations and parallel computers, Second edn. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  13. Kirk DB, Hwu W-m (2010) Programming massively parallel processors: a hands-on approach. Morgan Kaufmann, Burlington, MA

    Google Scholar 

  14. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE et al (2007) A survey of general-purpose computation on graphics hardware. Comput Graph Forum 26:80–113

    Article  Google Scholar 

  15. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A et al (2010) A view of cloud computing. Commun ACM 53:50–58

    Article  Google Scholar 

  16. Foster I, Kesselman C (eds) (2004) The grid: blueprint for a new computing infrastructure. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  17. Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y et al (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digital Earth 4:305–329

    Article  Google Scholar 

  18. Ding YM, Densham PJ (1996) Spatial strategies for parallel spatial modelling. Int J Geogr Inf Syst 10:669–698

    Article  Google Scholar 

  19. Wang S, Armstrong MP (2003) A quadtree approach to domain decomposition for spatial interpolation in grid computing environments. Parallel Comput 29:1481–1504

    Article  Google Scholar 

  20. Tomlin DC (1990) Geographic information systems and cartographic modeling. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  21. Armstrong M, Pavlik C, Marciano R (1994) Parallel processing of spatial statistics. Comput Geosci 20:91–104

    Article  Google Scholar 

  22. Armstrong M, Marciano R (1995) Massively parallel processing of spatial statistics. Int J Geogr Inf Syst 9:169–189

    Article  Google Scholar 

  23. Cheng T (2013) Accelerating universal Kriging interpolation algorithm using CUDA-enabled GPU. Comput Geosci 54:178–183

    Article  Google Scholar 

  24. Gajraj A, Joubert W, Jones J (1997) A parallel implementation of kriging with a trend. Report LA-UR-97-2707. Los Alamos National Laboratory, Los Alamos

    Book  Google Scholar 

  25. Guan Q, Kyriakidis P, Goodchild M (2011) A parallel computing approach to fast geostatistical areal interpolation. Int J Geogr Inf Sci 25:1241–1267

    Article  Google Scholar 

  26. Kerry KE, Hawick KA (1998) Kriging interpolation on high-performance computers. Technical report DHPC-035. Department of Computer Science, University of Adelaide, Australia

    Google Scholar 

  27. Pesquer L, Cortés A, Pons X (2011) Parallel ordinary kriging interpolation incorporating automatic variogram fitting. Comput Geosci 37:464–473

    Article  Google Scholar 

  28. Rokos, Armstrong MP (1996) Using Linda to compute spatial autocorrelation in parallel. Comput Geosci 22:425–432

    Article  Google Scholar 

  29. Tang W, Feng W, Jia M (2015) Massively parallel spatial point pattern analysis: Ripley’s K function accelerated using graphics processing units. Int J Geogr Inf Sci 29:412–439

    Article  Google Scholar 

  30. Wang S, Armstrong M (2009) A theoretical approach to the use of cyberinfrastructure in geographical analysis. Int J Geogr Inf Sci 23:169–193

    Article  Google Scholar 

  31. Widener M, Crago N, Aldstadt J (2012) Developing a parallel computational implementation of AMOEBA. Int J Geogr Inf Sci 26:1707–1723

    Article  Google Scholar 

  32. Yan J, Cowles M, Wang S, Armstrong M (2007) Parallelizing MCMC for Bayesian spatiotemporal geostatistical models. Stat Comput 17:323–335

    Article  Google Scholar 

  33. D’Ambrosio D, Spataro W, Iovine G (2006) Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: an application to debris flows. Comput Simul Nat Phenom Hazard Assess 32:861–875

    Google Scholar 

  34. Gong Z, Tang W, Thill J (2012) Parallelization of ensemble neural networks for spatial land-use modeling. In: Proceedings of the 5th international workshop on location-based social networks. ACM, Redondo Beach, CA, pp 48–54

    Google Scholar 

  35. He K, Zheng L, Dong S, Tang L, Wu J, Zheng C (2007) PGO: a parallel computing platform for global optimization based on genetic algorithm. Comput Geosci 33:357–366

    Article  Google Scholar 

  36. Peredo O, Ortiz J (2011) Parallel implementation of simulated annealing to reproduce multiple-point statistics. Comput Geosci 37:1110–1121

    Article  Google Scholar 

  37. Porta J, Parapar J, Doallo R, Rivera F, Santé I, Crecente R (2013) High performance genetic algorithm for land use planning. Comput Environ Urban Syst 37:45–58

    Article  Google Scholar 

  38. Abbott CA, Berry MW, Comiskey EJ, Gross LJ, Luh H-K (1997) Parallel individual-based modeling of Everglades deer ecology. Comput Sci Eng IEEE 4:60–78

    Article  Google Scholar 

  39. Deissenberg C, van der Hoog S, Dawid H (2008) EURACE: a massively parallel agent-based model of the European economy. Appl Math Comput 204:541–552

    Google Scholar 

  40. Guan Q, Clarke K (2010) A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. Int J Geogr Inf Sci 24:695–722

    Article  Google Scholar 

  41. Li X, Zhang X, Yeh A, Liu X (2010) Parallel cellular automata for large-scale urban simulation using load-balancing techniques. Int J Geogr Inf Sci 24:803–820

    Article  Google Scholar 

  42. Nagel K, Rickert M (2001) Parallel implementation of the TRANSIMS micro-simulation. Parallel Comput 27:1611–1639

    Article  Google Scholar 

  43. Tang W, Wang S (2009) HPABM: a hierarchical parallel simulation framework for spatially-explicit agent-based models. Trans GIS 13:315–333

    Article  Google Scholar 

  44. Tang W, Bennett D, Wang S (2011) A parallel agent-based model of land use opinions. J Land Use Sci 6:121–135

    Article  Google Scholar 

  45. Tang W (2013a) Accelerating agent-based modeling using Graphics Processing Units. In: Shi X, Volodymyr K, Yang C (eds) Modern accelerator technologies for GIScience. Springer, New York, pp 113–129

    Google Scholar 

  46. Uziel E, Berry MW (1995) Parallel models of animal migration in Northern Yellowstone National Park. Int J High Perform Comput Appl 9:237–255

    Google Scholar 

  47. Wang D, Berry M, Carr E, Gross L (2006) A parallel fish landscape model for ecosystem modeling. Simulation 82:451–465

    Article  Google Scholar 

  48. Mower J (1993) Automated feature and name placement on parallel computers. Cartogr Geogr Inf Syst 20:69–82

    Google Scholar 

  49. Mower JE (1996) Developing parallel procedures for line simplification. Int J Geogr Inf Syst 10:699–712

    Article  Google Scholar 

  50. Rey SJ, Anselin L, Pahle R, Kang X, Stephens P (2013) Parallel optimal choropleth map classification in PySAL. Int J Geogr Inf Sci 27:1023–1039

    Article  Google Scholar 

  51. Sorokine A (2007) Implementation of a parallel high-performance visualization technique in GRASS GIS. Comput Geosci 33:685–695

    Article  Google Scholar 

  52. Tang W (2013b) Parallel construction of large circular cartograms using graphics processing units. Int J Geogr Inf Sci 27(11):1–25

    Article  Google Scholar 

  53. Vaughan J, Whyatt D, Brookes G (1991) A parallel implementation of the Douglas-Peucker line simplification algorithm. Softw Pract Exp 21:331–336

    Article  Google Scholar 

  54. Wang L, Chen D, Deng Z, Huang F (2011) Large scale distributed visualization on computational grids: a review. Comput Electr Eng 37:403–416

    Article  Google Scholar 

  55. Wang H (2012) A large-scale dynamic vector and raster data visualization geographic information system based on parallel map tiling [Thesis]. Florida International University, Miami, FL

    Google Scholar 

  56. Cressie NA (1993) Statistics for spatial data (revised edition). Wiley, New York

    Google Scholar 

  57. Ripley BD (2005) Spatial statistics. Wiley, Hoboken

    Google Scholar 

  58. Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  59. Getis A, Ord JK (1996) Local spatial statistics: an overview. In: Longley PA, Batty M (eds) Spatial analysis: modelling in a GIS environment. Wiley, New York

    Google Scholar 

  60. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206

    Article  Google Scholar 

  61. Zhang J (2010) Towards personal high-performance geospatial computing (HPC-G): perspectives and a case study. In: Proceedings of the ACM SIGSPATIAL international workshop on high performance and distributed geographic information systems. ACM, San Jose, CA, pp 3–10

    Google Scholar 

  62. Aldstadt J, Getis A (2006) Using AMOEBA to create a spatial weights matrix and identify spatial clusters. Geogr Anal 38:327–343

    Article  Google Scholar 

  63. Deb K (2001) Multi-objective optimization. In: Multi-objective optimization using evolutionary algorithms. Wiley, West Sussex, pp 13–46

    Google Scholar 

  64. Fletcher R (2013) Practical methods of optimization. Wiley, New York

    Google Scholar 

  65. Tong D, Murray AT (2012) Spatial optimization in geography. Ann Assoc Am Geogr 102:1290–1309

    Article  Google Scholar 

  66. Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  67. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    Google Scholar 

  68. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3: 95–99

    Article  Google Scholar 

  69. Russell SJ, Norvig P, Canny JF, Malik JM, Edwards DD (1995) Artificial intelligence: a modern approach. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  70. Garrison WL (1959) Spatial structure of the economy: II. Ann Assoc Am Geogr 49:471–482

    Article  Google Scholar 

  71. Cova TJ, Church RL (2000) Exploratory spatial optimization in site search: a neighborhood operator approach. Comput Environ Urban Syst 24:401–419

    Article  Google Scholar 

  72. Church RL (1990) The regionally constrained p-median problem. Geogr Anal 22:22–32

    Article  Google Scholar 

  73. Murray AT, Gottsegen JM (1997) The influence of data aggregation on the stability of p-median location model solutions. Geogr Anal 29:200–213

    Article  Google Scholar 

  74. Aerts JCJH, Eisinger E, Heuvelink GBM, Stewart TJ (2003) Using linear integer programming for multi-site land-use allocation. Geogr Anal 35:148–169

    Article  Google Scholar 

  75. Scott AJ (1971) Combinatorial programming, spatial analysis and planning. Methuen, London

    Google Scholar 

  76. Hof JG, Bevers M (1998) Spatial optimization for managed ecosystems. Columbia University Press, New York

    Google Scholar 

  77. Banks J (1998) Handbook of simulation. Wiley, New York

    Book  Google Scholar 

  78. Batty M (2005) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. The MIT Press, Cambridge, MA

    Google Scholar 

  79. Benenson I, Torrens PM (2004) Geosimulation: automata-based modeling of urban phenomena. Wiley, London

    Book  Google Scholar 

  80. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93: 314–337

    Article  Google Scholar 

  81. Von Bertalanffy L (1972) The history and status of general systems theory. Acad Manag J 15:407–426

    Article  Google Scholar 

  82. Costanza R, Voinov A (2004) Landscape simulation modeling: a spatially explicit, dynamic approach. Springer, New York

    Book  Google Scholar 

  83. Epstein JM (1999) Agent-based computational models and generative social science. Complexity 4:41–60

    Article  Google Scholar 

  84. Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  85. Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans Agric Biol Eng 50:1211–1250

    Google Scholar 

  86. Costanza R, Maxwell T (1991) Spatial ecosystem modelling using parallel processors. Ecol Model 58:159–183

    Article  Google Scholar 

  87. Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  88. MacEachren AM, Gahegan M, Pike W, Brewer I, Cai G, Lengerich E et al (2004) Geovisualization for knowledge construction and decision support. Comput Graph Appl IEEE 24:13–17

    Article  Google Scholar 

  89. Armstrong MP, Xiao N, Bennett DA (2003) Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann Assoc Am Geogr 93(3):595–623

    Google Scholar 

  90. Tang W, Bennett DA (2011) Parallel agent-based modeling of spatial opinion diffusion accelerated using graphics processing units. Ecol Model 222:3605–3615

    Article  Google Scholar 

  91. Weisbuch G, Deffuant G, Amblard F, Nadal J-P (2002) Meet, discuss, and segregate. Complexity 7:55–63

    Article  Google Scholar 

  92. CUDA (2016) CUDA. http://www.nvidia.com/object/cuda_home_new.html

  93. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tang, W., Feng, W., Deng, J., Jia, M., Zuo, H. (2018). Parallel Computing for Geocomputational Modeling. In: Thill, JC., Dragicevic, S. (eds) GeoComputational Analysis and Modeling of Regional Systems. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-59511-5_4

Download citation

Publish with us

Policies and ethics