Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 57))

Abstract

Consumption of contaminated fruits, vegetables and/or cereals may be a significant exposure route for human exposure to chemicals. This chapter describes the processes that should be considered in models simulating the fate of chemicals in plants. The first section describes modelling approaches able to simulate the uptake of chemicals from soil to root and their subsequent transport through the xylem flow. This process is governed by the transpiration stream, driving the movement of dissolved chemicals in the continuum soil-root-stem-leaves/storage organs. Section 2 describes the transport of chemicals in the phloem system, which is responsible for distributing the products of photosynthesis from the leaves to the rest of the plant. Section 3 describes diffusion of chemicals from soil to tubers, which are botanically seen as a part of the stem. The transport of chemicals inside the tuber is driven by partition coefficients, water and gas contents, and diffusion coefficients in water/gas pores. Section 4 describes diffusive exchanges between leaves and air through both the stomata and cuticle pathways. Diffusion is driven by several permeabilities in series and/or in parallel within the leaf structure. Section 5 describes processes responsible for deposition and interception of chemicals on above-ground plant. Wet particle deposition is driven by rain events while dry deposition is driven by gravitational deposition of aerosols. Both the fractions of dry and wet deposits intercepted by leaf can be related to the interception fraction and the above-ground biomass (or leaf area index). Section 6 describes partition of chemicals between plant and plant water. Section 7 describes specific electrodiffusive processes for electrolytes. Such processes have to account for the distribution of the chemical among neutral and dissociated species and for electrical potential across the membrane. Section 8 describes data available for bioaccumulation of metals in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eurostat (2007). The use of plant protection products in the European Union. In: Eurostat statistical book. European Communities, Luxembourg. ISBN:92-79-03890-7. Catalogue number: KS-76-06-669-EN-N

    Google Scholar 

  2. Sau F, Boote KJ, Bostick WM, Jones JW, Mínguez MI (2004) Testing and improving evapotranspiration and soil water balance of the DSSAT crop models. Agron J 96(5):1243–1257

    Article  Google Scholar 

  3. López-Cedrón FX, Boote KJ, Piñeiro J, Sau F (2008) Improving the CERES-maize model ability to simulate water deficit impact on maize production and yield components. Agron J 100(2):296–307

    Article  Google Scholar 

  4. Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  5. Ritchie JT (1985) A user–oriented model of the soil water balance in wheat. In: Fry E, Atkin TK (eds) Wheat growth and modeling, NATO-ASI Series. Plenum Press, New York, pp. 293–305

    Chapter  Google Scholar 

  6. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A (2014) A review of approaches for evapotranspiration partitioning. Agr Forest Meteorol 184:56–70

    Article  Google Scholar 

  7. Allen RG, Pereira LS, Raes D, Smith M (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, 300(9), D05109

    Google Scholar 

  8. Legind CN, Trapp S (2009) Modeling the exposure of children and adults via diet to chemicals in the environment with crop-specific models. Environ Pollut 157(3):778–785

    Article  CAS  Google Scholar 

  9. Rikken MGJ, Lijzen JPA, Cornelese AA (2001) Evaluation of model concepts on human exposure. Proposals for updating the most relevant exposure routes of CSOIL

    Google Scholar 

  10. Trapp S, Schwartz S (2000) Proposals to overcome limitations in the EU chemical risk assessment scheme. Chemosphere 41(7):965–971

    Article  CAS  Google Scholar 

  11. Trapp S (2002) Dynamic root uptake model for neutral lipophilic organics. Environ Toxicol Chem 21(1):203–206

    Article  CAS  Google Scholar 

  12. Zianis D, Mencuccini M (2005) Aboveground net primary productivity of a beech (Fagus moesiaca) forest: a case study of Naousa forest, Northern Greece. Tree Physiol 25(6):713–722

    Article  CAS  Google Scholar 

  13. Tahiri AZ, Anyoji H, Yasuda H (2006) Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize. Agric Water Manag 84(1):186–192

    Article  Google Scholar 

  14. Asner GP, Scurlock JM, Hicke J (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12(3):191–205

    Article  Google Scholar 

  15. Breuer L, Eckhardt K, Frede HG (2003) Plant parameter values for models in temperate climates. Ecol Model 169(2):237–293

    Article  Google Scholar 

  16. Stephan J, Sinoquet H, Donès N, Haddad N, Talhouk S, Lauri PÉ (2008) Light interception and partitioning between shoots in apple cultivars influenced by training. Tree Physiol 28(3):331–342

    Article  Google Scholar 

  17. Drénou C (2007) Les racines. La Face cache des arbres. Institut pour le développement forestier, Paris

    Google Scholar 

  18. Picard N, Saint-André L, Henry M (2012) Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, p. 215

    Google Scholar 

  19. Smith WB, Brand GJ (1983) Allometric biomass equations for 98 species of herbs, shrubs, and small trees. North Central Forest Experiment Station. Research Note NC-299

    Google Scholar 

  20. Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. Lewis Publishers, London, pp. 38–64

    Google Scholar 

  21. Trapp S (2007) Fruit Tree model for uptake of organic compounds from soil and air. SAR QSAR Environ Res 18(3–4):367–387

    Article  CAS  Google Scholar 

  22. Kleier DA (1988) Phloem mobility of xenobiotics I. Mathematical model unifying the weak acid and intermediate permeability theories. Plant Physiol 86(3):803–810

    Article  CAS  Google Scholar 

  23. Trapp S, Cammarano A, Capri E, Reichenberg F, Mayer P (2007) Diffusion of PAH in potato and carrot slices and application for a potato model. Environ Sci Technol 41(9):3103–3108

    Article  CAS  Google Scholar 

  24. Riederer M (1995) Partitioning and transport of organic chemicals between the atmospheric environment and leaves. In: Trapp S, JC MF (eds) Plant contamination, modeling and simulation of organic chemical processes. Lewis Publishers, Boca Raton, pp. 153–190

    Google Scholar 

  25. Riederer M (2006) Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. J Exp Bot 57(12):2937–2942

    Article  CAS  Google Scholar 

  26. Riederer M, Friedmann A (2006) Transport of lipophilic non-electrolytes across the cuticle. Annual Plant Reviews 23:250–279

    CAS  Google Scholar 

  27. Kerstiens G (2006) Water transport in plant cuticles: an update. J Exp Bot 57(11):2493–2499

    Article  CAS  Google Scholar 

  28. Kerstiens G (2006) Parameterization, comparison, and validation of models quantifying relative change of cuticular permeability with physicochemical properties of diffusants. J. Exp. Bot 57(11):2525–2533

    Article  CAS  Google Scholar 

  29. Kerler F, Schönherr J (1988) Accumulation of lipophilic chemicals in plant cuticles: prediction from octanol/water partition coefficients. Arch Environ Contam Toxicol 17(1):1–6

    Article  CAS  Google Scholar 

  30. Thompson N (1983) Diffusion and uptake of chemical vapour volatilising from a sprayed target area. Pestic Sci 14(1):33–39

    Article  Google Scholar 

  31. Hoffman FO, Thiessen KM, Frank ML, Blaylock BG (1992) Quantification of the interception and initial retention of radioactive contaminants deposited on pasture grass by simulated rain. Atmos Environ Part A. General Topics 26(18):3313–3321

    Article  Google Scholar 

  32. Hoffman FO, Thiessen KM, Rael RM (1995) Comparison of interception and initial retention of wet-deposited contaminants on leaves of different vegetation types. Atmos Environ 29(15):1771–1775

    Article  CAS  Google Scholar 

  33. Pinder JE, Ciravolo TG, Bowling JW (1988) The interrelationships among plant biomass, plant surface area and the interception of particulate deposition by grasses. Health Phys 55(1):51–58

    Article  Google Scholar 

  34. Pinder JE, McLeod KW (1988) Contaminant transport in agroecosystems through retention of soil particles on plant surfaces. J Environ Qual 17(4):602–607

    Article  CAS  Google Scholar 

  35. Pröhl G, Hoffman FO (1996) Radionuclide interception and loss processes in vegetation. Modelling of radionuclide interception and loss processes in vegetation and of transfer in semi-natural ecosystems. Second report of the VAMP Terrestrial Working Group. International Atomic Energy Agency, Vienna, pp 9–47

    Google Scholar 

  36. Vandecasteele CM, Baker S, Förstel H, Muzinsky M, Millan R, Madoz-Escande C, Tormos J, Sauras T, Schulte E, Colle C (2001) Interception, retention and translocation under greenhouse conditions of radiocaesium and radiostrontium from a simulated accidental source. Sci Total Environ 278(1):199–214

    Article  CAS  Google Scholar 

  37. Barber JL, Thomas GO, Kerstiens G, Jones KC (2004) Current issues and uncertainties in the measurement and modelling of air–vegetation exchange and within-plant processing of POPs. Environ Pollut 128(1):99–138

    Article  CAS  Google Scholar 

  38. Smith KE, Jones KC (2000) Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation. Sci Total Environ 246(2):207–236

    Article  CAS  Google Scholar 

  39. Chamberlain AC (1970) Interception and retention of radioactive aerosols by vegetation. Atmos Environ 4(1):57–78

    Article  CAS  Google Scholar 

  40. Diamond ML, Priemer DA, Law NL (2001) Developing a multimedia model of chemical dynamics in an urban area. Chemosphere 44(7):1655–1667

    Article  CAS  Google Scholar 

  41. Müller H, Pröhl G (1993) ECOSYS-87: a dynamic model for assessing radiological consequences of nuclear accidents. Health Phys 64(3):232–252

    Article  Google Scholar 

  42. Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part I: review of present knowledge. Atmos Environ 42:3625–3653

    Article  CAS  Google Scholar 

  43. Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part II: a new modelling approach and applications. Atmos Environ 42:3654–3683

    Article  CAS  Google Scholar 

  44. Queguiner S, Ciffroy P, Roustan Y, Musson-Genon L (2009) Multimedia modelling of the exposure to cadmium and lead released in the atmosphere—application to industrial releases in a mediterranean region and uncertainty/sensitivity analysis. Water Air Soil Pollut 198(1–4):199–217

    Article  CAS  Google Scholar 

  45. Fu W, Franco A, Trapp S (2009) Methods for estimating the bioconcentration factor of ionizable organic chemicals. Environ Toxicol Chem 28(7):1372–1379

    Article  CAS  Google Scholar 

  46. Rendal C, Kusk KO, Trapp S (2011) Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals. Environ Toxicol Chem 30(11):2395–2406

    Article  CAS  Google Scholar 

  47. Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11(1):33–39

    Article  CAS  Google Scholar 

  48. Trapp S (2009) Bioaccumulation of polar and ionizable compounds in plants. In: Ecotoxicology modeling. Springer, New York, pp. 299–353

    Chapter  Google Scholar 

  49. BAPPET (2016) Base de données sur les teneurs en eléments traces métalliques de plantes potagères. http://www.developpementdurable.gouv.fr/BAPPET-BAse-de-donnees-sur-les.html. Accessed Dec 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Ciffroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ciffroy, P., Tanaka, T. (2018). Modelling the Fate of Chemicals in Plants. In: Ciffroy, P., Tediosi, A., Capri, E. (eds) Modelling the Fate of Chemicals in the Environment and the Human Body. The Handbook of Environmental Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-59502-3_8

Download citation

Publish with us

Policies and ethics